HIGH-ENERGY COSMIC RAYS

Rene A. Ong
University of California, Los Angeles

SLAC Summer Institute
1 August 2003
OUTLINE

• Introduction
 ▪ Messengers, observables, questions.

• Detection of HE particles
 ▪ Early history.
 ▪ Satellite & ground-based.
 ▪ Particle physics techniques!

• Physics: Origin of HE particles
 ▪ Power sources & particle acceleration.
 ▪ The general picture → many questions.
OUTLINE

- Astrophysics: Known HE Sources
 - γ-ray, CR, and ν skies.
 - Point and diffuse sources.

- Connection to Part. Physics & Cosmology
 - VHE/UHE radiation as probes of space.
 - Relic particles & top-down models.

- Summary – the next 5 years
INTRODUCTION
Cosmic Messengers

We know about the Universe from 4 messengers:

<table>
<thead>
<tr>
<th>Particles</th>
<th>charge</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Photons</td>
<td>neutral</td>
<td>crucial</td>
</tr>
<tr>
<td>2. Cosmic Rays</td>
<td>charged</td>
<td>v. important</td>
</tr>
<tr>
<td>3. Neutrinos</td>
<td>neutral</td>
<td>developing</td>
</tr>
<tr>
<td>4. Grav. Waves</td>
<td>neutral</td>
<td>infancy</td>
</tr>
</tbody>
</table>

5. (New stable particle)

These lectures concentrate on 1-3 at high-energy.
Energy Scales

Time (sec)	Temp. (°K)	Energy (eV)	Photons	Cosmic Rays
10^{-45} | 10^{30} | 10^{27} | 10^{21} (ZeV) | Planck
10^{-40} | 10^{25} | 10^{24} | 10^{18} (EeV) | GUT
10^{-35} | 10^{20} | 10^{15} (PeV) |
10^{-30} | 10^{15} | 10^{12} (TeV) |
10^{-25} | 10^{10} | 10^{9} (GeV) |
10^{-20} | 10^{6} (MeV) |
10^{-15} | 10^{3} (keV) |
10^{-10} | 1 |
10^{-5} | 10^{5} |
1 | 10^{3} yr |
10^{5} | 10^{10} |
10^{3} yr | 10^{5} |
10^{9} yr | 1 |

\(10^{-3}\) | 10^{5} |

\(10^{3}\) | 10^{3}\)

\(10^{9}\) yr | 10^{3}\)

\(10^{5}\) | 10^{3}\)

\(10^{9}\) yr | 10^{3}\)

Photons: CMBR, optical, X-rays, Gamma rays, High-Energy CR's

Cosmic Rays: CR's

Planck, GUT, EW, Now
Observables

- Particle Type: CR, γ, ν, g
- Energy
- Arrival Direction
- Variability
- Variability (Polarization)

Composition
Spectrum
Anisotropy
Light Curve
Energy Spectrum

- Total, diffuse spectrum individual species not resolved.
- Power-law spectrum E^{-3} differential.
- $E > 10^{20}$ eV.
- Energy density ~ 1 eV / cm3.
- Diffuse ν not (yet) seen.
Energy Spectrum (Flattened)

log(FLUX * E^3) in eV^2 m^-2 s^-1 sr^-1

- Akeno 1km^2
- Tibet
- Runjob
- Proton Saterite
- JACEE

log(ENERGY in eV)

Knee \(E^{-2.7} \)

Ankle \(E^{-2.7} \)

AGASA

Haverah Park

Yakutsk

Stereo Flys Eye

\[? \]
At the Highest Energies

Particles $E > 10^{20} \text{ eV}$ are not expected:

1. Very hard to accelerate to these energies.

2. Nuclei cannot travel beyond 100 Mpc

$$p\gamma_{\text{cmbr}} \rightarrow \Delta^+ \rightarrow \pi'\text{s}$$

What are these particles and where do they come from??
HE Implications

Phenomenological

Energy scale is reached by either:

1. Non-thermal, radiative processes (Astrophysics).

2. Decays, interactions from higher mass scale (Particle Physics).

Experimental

1. Particles are detected by total absorption.

2. We are required to measure tiny fluxes. (< 1 /km²/century at highest energies)
Other Properties

• Composition
 • Charged nuclei (P, He, C … Fe).
 • Total energy measured.

• Anisotropy
 • Very little detected – μG galactic magnetic field.

• Variability
 • Not detected at HE.

Origin of HE cosmic rays remains mysterious!
1. Galaxies have magnetic fields.
 • Protons and nuclei will be deflected by the $B \sim 5 \mu G$ galactic field.
 Larmor radius $r = \frac{R}{cB}$

<table>
<thead>
<tr>
<th>R</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{15} eV</td>
<td>0.3 pc</td>
</tr>
<tr>
<td>10^{20} eV</td>
<td>30 kpc</td>
</tr>
</tbody>
</table>

2. Intergalactic fields may also be significant
 • Clusters (e.g. Coma) have field strengths $B \sim 0.1 - 2 \mu G$, perhaps extending out along sheets and filaments.

Charged CR directions will be scrambled by B fields. But we can still learn a lot from their composition.
Low-Energy CR’s

Elemental Abundances

- Generally agrees with local material.
- Excess for light elements and near Fe.

Radioactive Clock Isotopes

- Mean CR lifetime \(\sim 15 \text{ Myrs} \).
- Required Luminosity \(L > 10^{40} \text{ ergs/s} \)
Questions I

What is the nature and the origins of this diffuse flux of cosmic-ray particles?

- Abundant, extremely energetic particles that play an important role in dynamics of galaxy.
- Sources must be powerful and renewable.
- At highest energies – we have no understanding of how they can be produced.

Do these particles provide clues about the early Universe or about the physics at higher mass scales?
Questions II

What can we learn from Astronomy at very high energies?

• New wavebands/messengers \rightarrow New Physics
• Gamma-rays, ν’s point directly back to sites of extreme particle acceleration or unexpected phenomena.
• VHE particles can be used to probe radiation fields and the fabric of space-time.

These are the major themes for this talk.
DETECTION OF VHE/UHE PARTICLES
Early History

Discovery of “Hohenstrahlung” (1912)
- Electrosopes in balloons (Hess, Kohlhoerster).

Identifying the nature of CR’s (1933-1937)
- Penetrating nature (Rossi).
- Latitude effect \(\rightarrow\) charged particles (Compton).
- East-West effect \(\rightarrow\) positively charged (Rossi, Compton, Alvarez).
- Positron & muon (Anderson etc.).

Reaching extreme energies (1938)
- Extensive air showers (Auger).
- Power law spectrum with energies to \(> 10^{14}\) eV.
- Clearly differentiated between primary/secondary CR’s.
“Hohenstrahlung”

Viktor Hess

Electroscope

Ionization Rate

Viktor Hess

Fig. 1. Cross-section of electroscope

Graph: Ion pairs/cm²/s vs. Altitude/km
These facts, combined with the further observations … all this constitutes pretty unambiguous evidence that the high altitude rays do not originate in our atmosphere… and justifies the designation “cosmic rays” …

Extensive Air Showers

Pierre Auger

pour les écrans interposés. On peut voir là une indication de l'énergie moindre des électrons géométriquement très écartés des condensations où les particules les plus énergiques sont présentes (courbe 5).

Lateral distribution
Experimental Techniques

- Balloon
- Satellite
- Air shower array
- Ice/Water Cherenkov
- Cherenkov Telescopes
Giant Air Showers

Picture of Giant Air Shower
Satellite

γ-ray: pair production

- Excellent background rejection
- Full-sky coverage
- Limited collection area $< 1 \text{ m}^2$

CR's: direct detection

- GCR / Solar energetic part.
- Elemental / isotopic meas.

EGRET

ACE
Air Shower Detection

10^{18}eV Proton $\rightarrow 10^9$ e in shower

- 20 km
- $\sim 28 X_0$

lateral distribution

Ground array of particle (γ, e, μ) detectors

- Particle pancake (ns – μs scale)
- Cherenkov (ns scale)
- N$_2$ Fluorescence (100 ns scale)

Fluorescence detector

Rene A. Ong

SLAC Summer Institute 2003
Atmospheric Cherenkov

\(\gamma \)-ray

\[\theta \sim 1.5^\circ \]

Area = \(10^4 - 10^5\) m\(^2\)

\(\sim 60\) optical photons/m\(^2\)/TeV

Whipple 10m (Arizona)

PMT camera

ns electronics
Ground Arrays

AGASA (Japan)
~ 100 km² area

Energy estimation S(600)
Lateral intensity

Absorber & charged particle detectors modest timing req.
Fluorescence detection

N2 fluorescence lines (UV)
decay ~ 100 ns, ~4 photons/m/e-

Longitudinal distribution
→ E, shower max

Shower intensity image

Fly’s Eye HiRes (Utah)
ν Detection (optical)

Two signatures:
- Muon track: CC interaction
 ~7km, 20x min.i. (10 TeV)
- Casade: CC or NC interaction
 \[\nu_{(e, \tau)} + N \rightarrow (e, \tau) + X \]
 \[\nu_{x} + N \rightarrow \nu_{x} + X \]

Neutrino cross sections have some uncertainty (~50% in PeV-EeV range).
ν Detection (optical)

Amanda-II (South Pole)
19 strings
677 modules
25,000 m² (10 TeV)

Deploying optical modules

Readout strategy

Detection (optical)

100 ns
HV

signal
flashing

Rene A. Ong
SLAC Summer Institute 2003
ν Detection (radio)

Coherent Cherenkov radio signal observed (SLAC):
- e⁻ beam into sand, rock salt

RICE concept (South Pole)

ν

sub-ns pulse, $E \sim 200$ V/m

2 GHz data

RICE concept (South Pole)
Comparison of Techniques

Subjective (!) comparison:

<table>
<thead>
<tr>
<th>Particle</th>
<th>Technique</th>
<th>Area</th>
<th>FOV</th>
<th>Part. ID</th>
<th>Ang. Res.</th>
<th>E Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR, γ</td>
<td>Satellite</td>
<td>small</td>
<td>wide</td>
<td>excellent</td>
<td>excellent</td>
<td>v. good</td>
</tr>
<tr>
<td>γ</td>
<td>At. Cherenk.</td>
<td>large</td>
<td>narrow</td>
<td>v. good</td>
<td>v. good</td>
<td>good</td>
</tr>
<tr>
<td>CR, γ</td>
<td>Ground array</td>
<td>v. large</td>
<td>wide</td>
<td>modest</td>
<td>o.k.</td>
<td>o.k.</td>
</tr>
<tr>
<td>CR, γ</td>
<td>N$_2$ fluoresc.</td>
<td>v. large</td>
<td>wide</td>
<td>good</td>
<td>o.k.</td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>Ice/water</td>
<td>v. large</td>
<td>wide</td>
<td>good</td>
<td>modest</td>
<td>modest</td>
</tr>
</tbody>
</table>

Note: DC stands for Duty Cycle.
ORIGIN OF THE PARTICLES
General Approaches

We hypothesize of two broad origins for HE particles:

1. Astrophysical Particle Acceleration ("bottom up"):
 - Non-thermal acceleration at source.
 - Emission into ISM and propagation to us.

2. New Particle Physics ("top down"):
 - New particle from EW or GUT scale interaction.
 - Relic produced in early Universe.
Cosmic Acceleration

To build a HE cosmic accelerator, we need the following parts:

1. **Injection**
2. **Power Source**
3. **Acceleration**
4. **Propagation**
1. Injection

Acceleration is done on charged particles. γ-rays and ν’s are secondaries. What is the source material for charged particles? At least three possibilities:

- Low-mass stars – coronal activity injects material into ISM.
- Dust in the ISM – ionized and then accelerated.
- High-mass stars – explode and recycle material.

Strong (inverse) correlation between:

CR elemental abundances \leftrightarrow Atomic ionization scale

larger abundances \leftrightarrow small ionization potential

Even after great acceleration, the energetic CR’s retain knowledge of their initial origin!
Ionization Potential Dependence

CR Abundance

SS Abundance

 Atomic ionization scale

First Ionization Potential (eV)

Ratio (Si=1)

10^{-1}

5 7.5 10 12.5 15 17.5 20 22.5 25

GCRS/LGA 100GeV/n
SEP/Photosphere 5–12MeV/n
2. Power Sources

Broadly speaking, there are two types of sources:

1. Electromagnetic
 - Rotating highly magnetized object (Pulsar)

2. Gravitational
 - Core collapse of a massive star – SN and its remnant – Gamma-ray Bursts
 - Accretion onto a compact object (BH, NS, etc.)
 - other...

Somewhat intertwined – eventually acceleration is done electromagnetically, and often both are involved.
Power Source: Pulsar

Crab Nebula

Emitted beams
Power Source: SN Remnant

- Collapse of massive star.
- Outer layers ejected with \(v \sim 1-2 \times 10^4 \) km/s.
- Shell expands and shock front forms as it sweeps up material from ISM.
- In \(\sim 10^4 \) yrs, blast wave begins to decelerate (Sedov phase) and slowly dissipate.
Supernovae are very attractive sites for cosmic ray acceleration:

- Natural source of highly evolved material.
- We see strong evidence for non-thermal populations of electrons.
- Energetics seem viable:

 Rate of SN in galaxy $\sim 1 / 40$ yr
 Energy released $\sim 10^{51}$ erg / SN
 SN Luminosity $L \sim 10^{42}$ erg/s (CR $L > 10^{40}$ erg/s)

SN can power the CR’s if KE in blast is converted into particle acceleration with $\varepsilon \sim$ few %.
Power Source: BH Accretion

- AGN are likely powered by accretion onto BH’s of mass between 10^6 – 10^9 solar masses.
- Matter falling in towards BH piles up in a rotating accretion disk.
- Released energy powers a broad spectrum of strong emission and jets of relativistic outflow.

AGN model
Compact Accretion

Accretion basics:

For particle falling in from infinity: \[\frac{1}{2} m v^2 = \frac{G M m}{R} \]

KE is dissipated at surface at rate: \[L = \frac{1}{2} \dot{m} v^2 = \frac{1}{2} \left(\frac{r_s}{R} \right) \dot{m} c^2 \]

Luminosity: \[L = \varepsilon \dot{m} c^2 \] where \(\varepsilon \) is some efficiency factor.

\[
\begin{align*}
\text{For pp-chain} & \quad \varepsilon \sim 7 \times 10^{-2} \\
\text{NS} & \quad \varepsilon \sim 0.1 \\
\text{BH} & \quad \varepsilon \sim 0.06 \ (\text{S}) - 0.40 \ (\text{K})
\end{align*}
\]

Compact accretion is much more efficient than nuclear energy!

(For BH’s, a bit tricky because no solid surface – practically, we consider situation with angular mom. \(\rightarrow \) accretion disk around BH.)
Accretion Limit

An important limit comes from the balance of material infall and outgoing radiation pressure.

Eddington Luminosity = Maximum luminosity for spherically symmetric accreting source (steady state).

Gravitational force (protons): \[F_{\text{grav}} = \frac{GMm_p}{r^2} \]

Radiation force (plasma): \[F_{\text{rad}} = \sigma_T N_\gamma h\nu / c \quad N_\gamma = \frac{L}{4\pi r^2 h\nu} \]

Eddington:

\[
L_E = 2\pi r_s m_p c^3 / \sigma_T \sim 10^{38} \text{ (M/M}_\odot\text{) ergs/s}
\]

For AGN, situation is much more complicated, but this provides a crude benchmark.
A variety of mechanisms have been proposed to explain how HE particles are accelerated in astrophysical environments.

Leading contender: Fermi acceleration (various forms)

Original Form (1949):

- Charged particles reflected off irregularities in galactic B field.
- Particles gain energy statistically.
 Energy gain: \[\frac{\Delta E}{E} \sim \left(\frac{V}{c} \right)^2 \]
- If particles remain in region for time \(T_{\text{esc}} \), a power law form of energies results.
Fermi Acceleration I

Why does the Fermi mechanism naturally give a power-law spectrum?

Let \(E = \beta E_o \) energy after one collision

\(P = \) probability of particle remaining in accelerating region

After \(k \) collisions:

\[N = N_o P^k \]

number of particles with \(E = E_o \beta^k \)

Thus:

\[\frac{N}{N_o} = \left(\frac{E}{E_o} \right)^{\ln P/\ln \beta} \]

But, Fermi’s original theory was not able to explain origin of CR’s.

- Random motion of interstellar clouds is too small.
- Collisions too infrequent (MFP ~ 1 pc).
- Acceleration must be quick enough to overcome ionization losses.
- Theory did not explain the power-law index.
In late 1970’s, the Fermi acceleration mechanism was substantially improved upon for the case of strong shock waves.

- Shock move rapidly through ISM.
- HE particles move back and forth across shock boundary, gaining energy with each crossing. **First-order Fermi acceleration** \(\sim (V/c) \).
- Naturally get differential power-law index of \(\alpha = 2 \).

Applied to SN remnants, acceleration time \(\sim 10^4 \) yrs, we reach a limiting energy:

\[
E_{\text{max}} < Z \times 10^{14} \text{ eV}
\]

(good thing!)
The clues from low-energy point towards a galactic origin for CR’s:

- Energy density 1 eV/cm3 \Rightarrow CR’s cannot be universal.
- Magnetic fields will trap and contain charged particles that are produced in the galaxy.
- Abundances \Rightarrow CR’s interact with material in galaxy to produce secondary elements not found in solar system.
- CR material most consistent with highly evolved stellar systems (e.g. Supernovae).
- CR ages \Rightarrow continual renewal of energetic particles.

General Picture: bulk of CR’s are produced in a number of (discrete) galactic sources (SN’s?) that fill the galaxy with energetic particles. This seems fine at “low” energy ($< 10^{15}$ eV), but …
Reaching Higher Energies

Large industry developing acceleration models to extend to much higher energies. Somewhat successful.
Some possibilities:

- Pulsars – like Crab, but accelerating iron.
- Magnetars – pulsars with $B \sim 10^{15}$ G.
- Induction from spinning (supermassive) black holes

- Multiple SN’s, or a SN explosion into a strong wind.
- Galactic shock waves.
- AGN (radio jet termination, quasar jets).
- Gamma-ray bursts – extreme Lorentz factors.

In general, difficult to reach 10^{19} eV, let alone 10^{20} eV!
“Hillas Plot”

Minimum size of B field to contain particles being accelerated.

Achievable energy:

\[E [\text{EeV}] \sim Z R [\text{kpc}] B [\mu \text{G}] \]
4. Propagation

How particles propagate depends on their type and energy.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Deflected?</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td>yes</td>
<td>ISM (~10 g/cm²) - spallation</td>
</tr>
<tr>
<td>Nuclei</td>
<td></td>
<td>CMBR $p\gamma_{\text{cmb}} \rightarrow \Delta^+ \rightarrow \pi$’s</td>
</tr>
<tr>
<td>Gamma rays</td>
<td>no</td>
<td>Intergalactic radiation</td>
</tr>
<tr>
<td>Neutrinos</td>
<td>no</td>
<td>$\gamma\gamma \rightarrow e^+e^-$ (CMBR, CIR, etc.)</td>
</tr>
<tr>
<td>Neutrinos</td>
<td>no</td>
<td>~ None</td>
</tr>
</tbody>
</table>
Soon after the discovery of the CMBR, it was pointed out that protons would be absorbed while traversing intergalactic space.

“GZK Cut-off”\[P + \gamma_{\text{cmb}} \rightarrow \Delta^+ \rightarrow p + \pi^0 \rightarrow n + \pi^+ \]
Gamma-rays will pair-produce off intergalactic radiation fields.

- The photon density of the CMBR is well known, but at other λ, it is more poorly understood.

- Would like to turn this around to use absorption spectra to measure the CIR (more on this later).

Poorly understood
Gamma-Ray Horizon

For $n_{\text{ir}} = \text{density of cosmic IR}$, the optical depth is:

$$\tau \sim n_{\text{ir}} \sigma_{\gamma\gamma} D(z)$$

For $E = (1+z)E_0$ γ-ray energy
$\varepsilon = (1+z)\varepsilon_0$ IR energy
threshold for absorption is:

$$\sqrt{\varepsilon E} > 2 m_e c^2$$

Allows us to calculate the γ-ray horizon. Universe is transparent below $E \sim \text{GeV}$.

[Diagram showing redshift (log redshift) vs. photon energy (log photon energy [eV]) with TeV AGN, GRB, UV, NIR, FIR, and 3K regions marked.]
Energy Spectrum (Redux)

log(FLUX * E^3) in eV/m^2/s/ster

Knee

E-2.7

E-3.1

E-2.7

Ankle

SNR’s

Galactic ?

Extra – Galactic ?

Akeno 1 km²

Tibet

Runjob

Proton Saterite

JACEE

AGASA

Haverah Park

Yakutsk

Stereo Flys Eye

log(ENERGY in eV)