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Abstract.
We report the first detection of intrinsic velocity dispersion for the Arches - a young

(∼ 2 Myr), massive (104M�) starburst cluster located at only 26 pc in projection from
the galactic center. This was accomplished using proper motion measurements within
the central (10′′ × 10′′) of the cluster, obtained with the laser guide star adaptive
optics system at Keck Observatory over a 3 year time baseline (2006-2009). The
expected velocity dispersion is sufficiently small that this is only possible with uniform
data sets, which improve the proper motion measurements by a factor ∼ 5 over
previous measurements from heterogeneous instruments. By careful, simultaneous
accounting of the cluster and field contaminant distributions as well as the possible
sources of measurement uncertainties, we estimate the internal velocity dispersion to
be 0.15± 0.01 mas yr−1, which corresponds to 5.7± 0.4 km s−1 at a distance of 8 kpc.

We employ two commonly used mass relations to convert the Arches velocity
dispersion into a kinematic enclosed mass estimate. The standard core fitting
relationship yields (10±5)×103M� within the cluster half-mass radius of 0.4 pc, while
the Leonard-Merritt moment-based estimator indicates (11±2)×103M� within 0.2 pc.
This provides the first test of mass estimates based on extrapolations of photometrically
accessible stars using the three leading candidates for the present day mass function.
While the mass predicted by a Salpeter mass-function without low-mass truncation is
marginally above our kinematic estimate, all PDMF models still statistically consistent
with the kinematic constraints. Extension of the radial coverage of the proper motion
measurements should enable a more robust discrimination between PDMF possibilities.

22 July 2010 - Sections 3-5 significantly revised (4 & 5 completely re-written as
they seem to have confused most readers) . Abstract slightly updated; new figures and
tables added. I have very good comments in-hand for Sections 1 & 2.
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1. Introduction

Star formation is a critical element in essentially all models of structure formation and

evolution in the Universe. The best locations to study this process are the young (few

My), massive (M ∼ 104M�) clusters (hereafter YMCs). Since nearly all stars likely

formed in clusters (e.g. Lada & Lada 2003), these clusters likely form the building blocks

of the stellar populations in galaxies. The present-day characteristics of these clusters

illustrate the interplay between their primordial conditions (particularly the initial mass

function and the degree of primordial mass segregation that may be present), the effect of

the tidal field in which the cluster lies, and dynamical mass segregation. Of particular

interest is the present-day mass function (PDMF) of these clusters, which provides

indirect constraints on the IMF and the degree of mass segregation, and therefore the

physics of star formation.

Only seven YMCs younger than 10My are presently known in the Milky Way

(Portegies Zwart et al. 2010). Photometric observations of the relatively nearby YMCs

Westerland 1 and NGC 3603 indicate mass segregation (Harayama et al. 2008; Brandner

et al. 2008) as well as a possibly top-heavy global IMF (Harayama et al. 2008). The

YMC known as the Arches provides a more extreme test of cluster formation models

due to its present location 26pc in projection from the galactic center (GC). In such a

strong tidal field, a cluster like the Arches is expected to disrupt entirely in ∼ 5 My

(Kim et al. 1999; the present age of the Arches is likely 2-2.5 My; Najarro et al. 2004).

Moreover, the high local gas density in the GC environment might produce an unusual

IMF, with an overabundance of high-mass stars and a possible truncation at low-mass

(Morris 1993: for the Arches, such a truncation must occur . 1M�; Kim et al. 2006).

Photometric attempts to determine the PDMF of the Arches suffer from crowding

and variable extinction effects. Within the half-mass radius rhm ∼ 0.4pc (Stolte et al.

2002), several determinations of the mass function suggest a top-heavy PDMF with

(Γ ' −1.05 − −0.75; Figer 1999; Stolte et al. 2005; 2002). However a recent estimate

including corrections for differential extinction variations as well as radial variations

in AK itself, suggested that the global PDMF within rhm is consistent with Salpeter

(Γ ' −1± 0.2; Espinoza et al. 2009).

The different PDMFs predict different total mass of stars Mhm within rhm.

Conditions in the inner Milky Way might lead to a truncation of the mass function

at ∼ few ×0.1M� (Morris 1993); for truncation mass 1 M� and 0.1M�, the top-heavy

PDMF predicts Mhm ' 1.08× 104M� and 1.2× 104M� respectively (Figer et al. 1999;

Kim et al. 2000). In contrast, the Salpeter PDMF predicts (2 ± 0.6) × 104M� and

(3.1 ± 0.6) × 104M� respectively (Espinoza et al. 2009). A kinematic measure of

Mhm provides a direct test of the PDMF of the Arches cluster. In a pioneering proper

motion study of the Arches, Stolte et al. (2008) used one epoch each of VLT/NACO

and Keck/NIRC2 separated by 4.3 years to measure the motion of the cluster. However

differential distortion between the cameras limited the proper motion precision to

∼ 0.7 mas yr−1, somewhat too coarse to measure the velocity dispersion, for which
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the expected order of magnitude is about ∼ 0.2 mas yr−1‡.
We have observed the central 10′′ × 10′′ of the Arches across five epochs with

a uniform observational setup (PIs Morris, Ghez). Using NIRC2 on Keck-2, behind

the LGS Adaptive Optics facility (e.g. Wizinowich et al., Ghez et al. 2005), these

cross-instrument systematics encountered by Stolte et al. (2008) are not present in our

observations, and we are able to attain proper motion measurements with error lower

than the expected velocity dispersion. We report here on our results, which provide the

first kinematic mass estimate of the Arches cluster.

This communication is organised as follows. Section 2 describes the observations

and positional measurement technique, while Section 3 describes the process of proper

motion measurement and error assignment. Section 4 describes the techniques used to

fit the cluster membership probabilities and kinematic parameters, the results of which

are given in Section 5. Section 6 provides our mass measurement and new bulk motion

measurement for the Arches, and briefly discusses the implications.

2. Observations & Measurements

Observations of the central (10′′×10′′) of the Arches cluster were obtained between May

2006 and May 2009 with the Keck near-infrared camera (NIRC2: PI K. Matthews),

behind the Laser Guide Star Adaptive Optics (LGSAO; Wizinowich et al. 2006; van

Dam et al. 2006) system on the W. M. Keck II 10-meter telescope. All observations were

obtained with the narrow-field mode of NIRC2 (field of view 10.2′′×10.2′′), which has a

pixel scale of 9.952 ±0.003 mas pix−1 (Yelda et al. 2010; hereafter Y10). Observations

were taken in the K ′ filter (∆λ = 0.35µm, λ0 = 2.12µm). Five epochs of the central

field in K ′ have now been taken (Table 1), the second of which (2006 July 18) was

reported in Stolte et al. (2008; 2010). Observations were designed to be as uniform as

possible across the epochs, with detector-Y commanded to align with the S-N direction

at each epoch, with the same pseudorandom dither pattern within a 0.7′′ × 0.7′′ box

applied at each epoch, (Y10 and refs therein), and over as uniform a range of zenith

angles as practical.

3. Analysis

Our goal is to extract relative proper motions of Arches stars against the field, which

is mostly comprised of bulge stars. The analysis proceeds in the following stages:

(1). Positions are estimated from a master-image at each epoch (Section 3.1). (2)

The extracted positions are transformed into a common reference frame using likely

cluster members, and proper motions extracted from the positional time-series in this

frame (Section 3.2). (3) Possible sources of proper motion uncertainties are explored

‡ We use the term “velocity dispersion” to refer to both the dispersion in mas yr−1 and km
s−1 throughout.
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(Sections 3.3-3.6) and, when additional error sources are identified, motions re-extracted

incorporating the updated errors.

3.1. Production of star-lists from each epoch

The procedures used to produce lists of stellar positions and fluxes from the image-

sets at each epoch has been fully described elsewhere (Y10 and refs. therein); here we

recapitulate briefly the aspects relevant for the present work. Images are calibrated

and corrected for distortion and differential atmospheric refraction (Y10). Within an

epoch, the corrected images are combined into a mean frame using positional shifts only,

weighting by the Strehl ratio estimate for each image. Images are combined using the

Drizzle algorithm (Fruchter & Hook 2002), and the mean frame is not supersampled.

The shifts to use are estimated using cross-correlation of the scene between images.

By combining using shifts only, we average through any rapid variations in effective

distortion between images, and average over slow drifts in image orientation (∼ 1′ over

the course of a night). A modified version of the IDL routine Starfinder (Diolaiti et al.)

is then used to measure star positions in the mean frame (Y10 & refs. therein).

Within the epoch, the stack of images is also divided into three subsets spanning

the same range of Strehl ratio and evolution, from which three submaps - mean images

of each of the three subsets - are produced and positions measured. The rms of stellar

position measurements across the three submaps is evaluated for each star and scaled

by 1/
√

3 to produce an estimate of the error on the positional measurement from the

mean of the three submaps. This provides a measure of the random measurement error

within an epoch (hereafter “centroiding error”; Figure 1).

3.2. Transformations to common reference frame and proper motion measurement

The Arches cluster moves rapidly with respect to the field (∼ 5 mas yr−1) and accounts

for most of the stars in the field of view (Stolte et al. 2008). We therefore measure

motions in the reference frame in which the cluster is at rest§. Details of this process

are given in the Appendix; here we outline the important considerations.

First, stars are matched across epochs to produce a master catalogue containing

all the original position measurements of each star. Each star-list is transformed to the

frame of a single star-list at a chosen epoch t0 . Motions are estimated from straight-

line fits to the transformed measurements in t0 . These measurements are then used to

evaluate a refined cluster reference frame at a chosen time tref and the original star-lists

are then re-mapped onto this refined frame and proper motions re-evaluated in this

frame.

The choice of epoch t0 is determined by the data quality and by the epochs of

observation. Proper motions are determined from straight-line fits to positions in the

chosen reference frame; choosing a reference frame near the pivot point of these straight

§ Throughout this discussion the term “frame” refers to reference frames of a given epoch or constructed
from the positions, not to individual images.
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line fits will minimize the error when mapping star-lists. Of the three deepest epochs

(Table 1), epoch 2008.5 is closest to this pivot point, and is adopted as t0 . However,

once a first estimate of proper motions has been produced, the constructed reference

frame is evaluated at a different time tref . This epoch is chosen to coincide with the

pivot point of the straight-line fits to the greatest number of stars; we adopt tref =

2008.0.

Because the field and cluster populations show significantly different motion, field

stars are removed from consideration when evaluating the transformation parameters

that map reference frames onto each other. This is achieved by clipping outliers in the

vector point diagram; after a few passes the centroid of the cluster population is at zero

motion in the vector point diagram.

When mapping star-lists between epochs, the transformation parameters are

estimated by χ2 minimization using the positional differences in each coordinate

separately. The appropriate order of transformation was determined by evaluating the

positional residuals as a function of order (Section 3.4). Measurements are inverse-

variance weighted using the error estimates in each coordinate for each star. As part of

the fitting, three passes of sigma-clipping (with 4σ bounds) are used to reduce sensitivity

to measurement-outliers, mismatches or misidentification of cluster members among the

reference stars. This typically removes a few stars from the reference list used for the

mapping and can be regarded as a fine-tuning of the reference star list for a given

mapping.

As the analysis proceeds, additional estimates of positional error become available

to use as weights. When mapping star-lists onto each other, errors used in the weighting

are the positional errors associated with each star-list. When mapping star-lists onto t0 ,

these errors are just the centroiding error in each list; when mapping onto tref the errors

associated with the target frame are the errors in the predicted position in tref based

on the first pass of motion estimation. When evaluating velocities in a given frame, the

positional error and error associated with the mapping into this frame (Section 3.3) are

added in quadrature. When motions in tref have been produced, the distribution of

velocity χ2 values is examined for additional sources of random error not yet taken into

account. Upon discovery of an additional error source, the entire analysis is repeated.

Additional error determined from the velocity fits is associated with variations between

epochs, and so is added in quadrature to the centroiding error in the frame mapping

and carried through in subsequent frame mapping. The size of this additional error is

examined in Section 3.5.

Positional time-series for a selection of objects along with the motions fitted to them,

are provided in Figure 2. The proper motion precision adopted is shown in Figure 3.

We are claiming sufficient proper motion precision to measure intrinsic dispersion. We

now describe the error sources beyond centroiding error (Section 3.1) that are included

in our analysis. Table 3 summarises the error budget of our astrometric measurements
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3.3. Alignment error

Error in predicted positions due to the mapping between frames was estimated through

Monte Carlo resampling: sets of half the reference stars were randomly drawn and the

frame-mapping re-fit and re-evaluated for each trial set to produce a trial set of positions

as transformed into the target frame. The rms of the differences between these predicted

positions and those predicted from the full list is then adopted as the contribution to

random positional error due to the fitting process. This error is always included when

positional errors after transformation are needed (steps 4 and onward above).

3.4. Transformation order

At the level of a few percent of a pixel (comparable to the velocity dispersion we wish

to measure), residual effective distortion (defined here as a spatially coherent pattern in

the deviation between measured and true position at the detector) may be present

between epochs. These variations might consist of both a spatially random and a

spatially correlated part, and might consist of temporally random and/or correlated

parts. To quantify spatially correlated time-variation, in step 6 above mappings between

reference frames were re-fit separately across each (t-t0 ) pair using polynomials of order

0 ≤ M ≤ 5 using the same set of likely cluster members at each order. The rms of

cluster members in X and Y as transformed to t0 was evaluated for each order for each

epoch (Figure 7), with errors on the rms evaluated from monte carlo resampling and

re-fitting in a similar manner to the estimation of alignment errors (Section 3.3). Visual

inspection suggests that for each epoch, a significant improvement is gained by using

a second-order polynomial; order 3 is sometimes indicated along Y , and 4th or higher

orders rarely bring about significant improvement.

The formal significance of the improvement of the fit when stepping up from order

M -1 to M was estimated by evaluating the ratio (χ2
ν(M -1)-χ2

ν(M))/χ2
ν(M) for order

1 < M < 5; assuming the residuals after mapping are indeed χ2 distributed, this ratio

should follow the F -distribution for the corresponding pairs of degrees of freedom for

M − 1 and M (e.g., Bevington & Robinson 2003, ch. 11). This produces a formal

false-alarm probability that a difference in badness-of-fit of χ2
ν(M -1)-χ2

ν(M) or greater

could arise from random chance alone. This suggests that order M > 3 is not warranted

for fits to either coordinate (Figure 5; Left).

The apparent improvement in fit significance at order M = 5 is probably an artefact

of overfitting to the ∼ 235 reference objects. A control test was conducted where stars

at the observed positions were moved randomly under the expected velocity distribution

of the cluster or (for 15% of objects) the field, perturbed by measurement error, and

subjected to a 2nd order polynomial of similar magnitude to the parameters fitted to

the real stellar positions. This indicated that the formal fit statistic is indeed sensitive

to the polynomial order, provided the number of reference stars is sufficient. A 5th order

polynomial (21 terms, or ∼ 10 stars per term) is often spuriously indicated (Figure 5;

Right). We therefore adopt a second-order polynomial for the frame mapping when



LGS-AO Motions of the Arches 7

extracting motions. In principle, relative distortions between epochs might require a

more complicated description, but this cannot be determined from the sample at hand.

3.5. Additional random error

When velocities have been extracted, the distribution of χ2 values from the velocity fits

is quite different from that expected if all random errors have correctly been included

(Figure 7); clearly additional random positional variation is present between epochs

that has not been accounted for by centroiding and alignment error. There are several

candidate causes; for example the spatial pattern of PSF variation may differ between

epochs, there may be residual relative distortion between reference frames that has

not been fully accounted for by the frame mapping; or there may be a temporally

random component owing to confusion by unrecognized sources (Section 3.6). We ask

what size of additive error ε must be added in quadrature to the random error sources

estimated thus far, such that the distribution of χ2 values from the velocity fits most

closely matches its expectation under purely random positional error along the time-

series. Until this condition is met, the proper motion error reported from the fits to

the positional time-series for each object underestimates the true size of the random

component of the proper motion error.

Once stars are aligned into the tref reference frame, velocities are re-fit for trial

values of εX , εY , and the resulting distribution of χ2 values from the velocity fits

compared to expectations. Two tests were evaluated to make the comparison. First,

the chi-squared test was evaluated for the difference between the χ2 histogram and the

theoretical expectation at each trial additive error. Because of the binning required,

this statistic does not vary smoothly with the trial error; to find the minimum, a

second-order polynomial was fit to the trough in the fit statistic. Second, the two-sided

Kolmogorov-Smirnov test was used as a fit statistic to obviate the need for binning.

This produces a smoother distribution of fit statistic, but at the expense of a broader

range of allowed values. While the minima returned by the two measures are broadly

consistent with each other, we adopt the chi-squared test since it appears to provide

a more sensitive determination of the best-fit additive error (Figure 8). Errors on

this determination of ε̄ are estimated by simulation; sets of positional time-series are

constructed under gaussian noise with amplitudes as in the real data and perturbed by

additional spatially uniform error εin (without changing the “measured” error). The

rms of (input - recovered) values of ε̄ is then adopted as the error in the additive error.

Only stars with 5 measurements are used to estimate ε.

As the balance of dominant error terms evolves with magnitude (e.g. Fritz et al.

2010), we might expect ε̄ to also vary with magnitude. In addition, there is some

indication that the radial distribution of stars varies with magnitude (Figure 6); thus

radially-dependent error-terms may correlate with magnitude. We therefore break the

sample into three non-overlapping magnitude bins such that the number of stars with 5

good measurements is approximately uniform across the bins. The additive error and its
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uncertainty is then determined for each magnitude bin following the above prescription

in the previous paragraph (Figure 9).

Because they describe the mean additional statistical scatter required between

epochs, the additive errors ε̄X , ε̄Y are applied to the position lists at the stage of frame

mapping. The distribution of χ2 values from the velocity fits after re-mapping and re-

fitting including additive error was evaluated for three cases: (1). no additive error; (2).

a flat additive error (as determined from the 10 < K ′ < 16 sample), and (3). additive

error allowed to vary with magnitude. We find that a flat distribution of additive error

with magnitude produces a velocity χ2 distribution significantly more discrepant from

statistical expectation than a magnitude-dependent additive error (Figures 7-10).

3.6. Source confusion

When a sufficiently bright star passes within ∼ 1 FWHM of the PSF of a star of interest,

the shape of its PSF can be sufficiently altered that its position measurement is biased,

but not so altered that the measurement is rejected. In some cases this bias can be

much larger than the positional measurement error (& 2 mas for ∆K ′ < 2; Ghez et al.

2008). The distribution of this confusion bias across the sample of stars depends on the

spatial crowding and magnitude distribution of stars in the field of view. To estimate

its order of magnitude for the Arches central field, we use the simulations of Fritz et

al. (2010), which model the distribution of astrometric bias as a function of magnitude,

for a K ′ distribution appropriate for the nuclear star cluster near the galactic center.

The rms of the confusion bias σbias follows a power law whose normalization depends on

the stellar density within the field. Of their three regions of interest, the stellar density

within the Arches field matches most closely that of their 3.5′′ sample (Figure 6). This

then predicts positional bias σbias of order 20% of the additive errors ε for K ′ < 18 and

comparable to ε at K ′ > 18 (Table 2).

Relative motion across the PSF of the two components of a confused pair would

imprint a spurious motion due to the resulting time-variation of the confusion bias.

Inter-epoch variation in the PSF would thus cause varying positional bias between

epochs even in the case of components that are perfectly stationary with respect to

each other. Under the expectation that PSF variation between epochs is random, this

error is subsumed within the additive error above (Section 3.5).

Linear trends in the relative separation of the star and its unrecognized confusing

counterpart are in principle more problematic, as the spurious motion thus induced

would be impossible to separate from the desired intrinsic motion. Indeed, for some

of the rapidly-moving S-stars near the galactic center, apparent deviations from the

orbital path on a timescale of up to a few years are clearly visible as the star of interest

crosses the region of influence of the confusing source entirely during the timebase of

the observations (Ghez et al. 2008; Gillessen et al. 2009); measurements confined to

the time-interval of confusion would detect linear motion in the wrong direction entirely.

However, for the Arches stars of interest here, relative motions of members of a confused
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pair are too slow to have a significant impact on the motions we measure. We assume

that the bias changes by 1×σbias in the time taken for the relative separation of confused

components to change by the FWHM of the PSF. With expected velocity dispersion

∼ 0.2 mas yr−1 (Stolte et al. 2008), confused pairs of cluster objects change their

separation by . 3% of the FWHM per year, so that the astrometric bias will essentially

be static for confused cluster-pairs. Cluster objects confused with field stars may be

subject to relative motions ∼ 5 mas yr−1; in this case the proper motion bias may

approach ∼ 0.1σbias yr−1. We conclude that, for our measurements of motions in the

Arches central field, proper motion bias due to confusion trends is a very small effect

compared to other sources of error (Table 3) and can safely be ignored in our analysis.

4. Cluster Kinematics and Membership Probabilities

The cluster shares the field of view with a significant field population. To fit membership

probabilities, we fit the kinematic parameters of the cluster and field components

simultaneously with the relative contribution each component makes to the population

in the image (Section 4.1). Armed with membership probabilities, we also estimate the

velocity dispersion of the cluster and subsamples within the cluster by direct Maximum

Likelihood fitting of the motions of likely cluster members (Section 4.2).

4.1. Kinematic fitting and membership probabilities

The field population is likely dominated by stars in the inner region of the Milky Way

bulge and the outer regions of the central nuclear disk (Launhardt et al. 2003). Too few

field objects are present in our sample to decompose the field population by distance

based on our measurements. Both the bulge and the disk have a central concentration

along our line of sight, however; for the Bulge we expect to preferentially sample field

stars within a few hundred parsecs of the Arches population itself along the line of

sight (e.g. Cabrera-Lavers et al. 2007). The velocity signature of the field component

should thus be a sum of differential rotation along the line of sight and intrinsic

velocity dispersion, sampled from the bulge and nuclear disk. Mass models fit to COBE

photometry indicate that at ∼ 30 pc from the galactic center, the CND and bulge

contributions to the stellar population should be of comparable magnitude, although

the uncertainty in the mass model is rather large (Launhardt et al. 2003). We find that

the statistics of our field are still too poor to fit for multiple field components, so we

parameterize the field population as a single kinematic component. Unlike many cluster

studies (e.g. Platais et al. 2000), our field is expected to be significantly asymmetric

in the vector point diagram (hereafter VPD), as the bulge velocity dispersion is larger

along the galactic plane than perpendicular to it (Howard et al. 2010); at 350pc from the

galactic center, for example, proper motion dispersions are of order 5, 3 mas yr−1 along

and perpendicular to the galactic plane, respectively (Clarkson et al. 2008).

Because the cluster distribution in the vector point diagram is so much tighter than
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the field distribution, fitting to the binned VPD (Stolte et al. 2008) is not appropriate

for this dataset as there is no binning factor that allows simultaneous resolution of both

cluster and field components. Instead we follow a more classical approach and maximize

the likelihood L(data|component fractions, kinematic parameters, measurement errors)

without recourse to binning. The component fraction πk describes the mean surface

density of stars in the image that belong to the k’th component; since our field fits

entirely within the flat core of the surface density radial profile (Espinoza et al. 2009),

we assume that πk is uniform within our field of view. We do not know the true

proper motion of each star, so we marginalize it out; the resulting likelihood L (data) is

then the convolution of the likelihood due to the model and that due to measurement

error. We follow standard practice (e.g. Jones & Walker, Kozhurina-Platais et al) in

using bivariate gaussians to model the cluster in the VPD. Because the field population

is sampled along a concentrated radius range, we also parameterize the field with a

bivariate gaussian. The likelihood of finding a star at a given location in the VPD is

thus given by the sum of K gaussian components:

L(~vi) =
K∑
k

πk
1

2π|Σki|1/2
exp

(
−1

2
(~vi − µ̄k)TΣ−1

ki (~vi − µ̄k)
)

≡
K∑
k

φki (1)

where φki describes the likelihood of finding a given star in a given component at

its location in the VPD. The membership probability of a given star with the k’th

component is then the usual (e.g. Kozhurina-Platais et al. 1995)

P (k)i =
φki∑K
j φji

(2)

In (1), µ̄k is the centroid of the component in the VPD and

Σki = Zk + Si

= RkΛkR
T
k + Si (3)

is the covariance matrix of the K’th component for the i’th star. The orientation of

the component in the VPD is described by the rotation matrix Rk and its velocity

dispersions (squared) form the elements of the diagonal matrix Λk. The (squared)

measurement errors for the given star form the elements of Si, which is diagonal in

detector coordinates. Once the best-fit observed components to the dispersion have

been found, the intrinsic velocity dispersions and orientations are then found from the

eigenvalues and eigenvectors of (Σki − Si).

Best-fit parameters and component fractions are found by maximizing∑N
i lnL(~vi) =

∑N
i ln

(∑K
k φik

)
over the sample of reference stars of interest). To

evaluate the fit, we employ the Expectation Maximization (hereafter EM) algorithm,

in which the maximum-likelhood πk and the kinematic parameters are evaluated se-

quentially and iteratively until convergence. This technique is well-established outside
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astronomy (e.g. Chapter 9 of Bishop 2008) and is becoming more commonly employed

to mixture problems in astronomy in which binning is undesirable and/or a low number

of reference objects is available (e.g. Bovy et al. 2009).

Strongly-varying error is a significant complication, as convergence to best-fit

parameters (µ̄k,Σki) is slow and requires some supervision (Bovy et al. 2009). We

are investigating the use of Markov Chain Monte Carlo to explore the probability

distributions of the best-fit fractions and parameters; this type of approach will probably

be essential when including the off-center fields, for which πk is also expected to

vary spatially. We have also investigated using EM with multiple components for the

cluster; this technique requires some forcing to ensure the two cluster components have

coincident centers in the VPD, likely due to low-number statistics. For the present

investigation, we use a single cluster component and choose instead a variant of the

technique of Khozurina-Platais et al. (1995 and refs therein) in which membership

probabilities for each star are estimated using kinematic parameters fitted only from

stars with roughly similar error (so Σki ≈ Zk+S̄ = Σk for the sample). When estimating

membership probability, we break the sample into overlapping bins two magnitudes

wide (so K ′=(14.0-16.0), (15.0-17.0)...) and evaluate the membership probability to

stars within 0.5 magnitudes of the center of each bin. In this way, the membership

probability of every star is estimated from a sample consisting of at least 100 stars, with

the star of interst always at least 1 magnitude from the edge of the sample.

To investigate the size of any misclassification biases that remain, synthetic datasets

were simulated using the same parameters at all magnitudes and perturbed by the

observed proper motion errors. The above fitting process was performed for a large

number of trials and the recovered parameters observed as a function of magnitude. We

see that a small bias does remain in both the component separation and the velocity

dispersion; however the magnitude dependence of the recovered parameters is greatly

reduced (Figure 7). We correct the fitted components for these biases.

Errors on the parameters thus fit are estimated by Monte Carlo. For the orientation

of the components, the vector separation between components, and the component

fractions we use full-sample bootstrap resampling.

4.2. Direct calculation

The above process fails when the sample size is . 70 stars, or contains a negligible

field component (as occurs for K . 14.5). For these samples, dispersions are estimated

directly from the motions of likely-cluster objects. Making the assumption that the

cluster is intrinsically symmetric in the VPD, along each direction we maximize

L(v̄, σ) =
N∏
i

(2π(σ2 + e2
i ))
−1/2 exp

{
−(vi − v̄)2/2(σ2 + e2

i )
}

(4)

for v̄, σ iteratively, where σ is the intrinsic velocity dispersion and ei the measurement

error. For each σ, v̄ is obtained by weighted averaging while for each v̄, σ is found
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numerically by bisection. Errors are estimated by Monte Carlo using bootstrap

resampling.

5. Results

5.1. Cluster Velocity Dispersion

The kinematic fitting and direct approaches produce complementary estimates for

the intrinsic velocity dispersion of the Arches cluster. Both have been corrected for

measurement error using the procedures described above. Tables 7 & 7 show the

kinematic parameters fit to cluster and field, and the velocity dispersion estimate for

the cluster respectively.

Both estimates yield cluster dispersions with at least 4σ significance for stars at

K < 18, and usually closer to 8σ. The mean cluster velocity dispersion is 5.7 ± 0.4

km s−1 (kinematic fitting) and 5.3 ± 0.3 km s−1 (direct calculation). An increase in

dispersion with magnitude is admitted by our data. For the brightest magnitude bin

(K < 14), no field population is apparent so there the velocity dispersion is estimated

from direct calculation alone. The kinematic fits suggest that the cluster major and

minor axes in the VPD are not significantly discrepant, as expected since cluster stars

brighter than K = 17.5 were used to define the reference frame.

5.2. Cluster bulk motion and field properties

The field component shows axis ratio that is roughly constant with magnitude, while its

contribution to the sample in the field of view increases as fainter objects are probed.

Its orientation in the VPD is consistent with the galactic plane, indicating differential

rotation.

The bulk motion of the Arches with respect to the field population is 172 ± 15 km

s−1 (the weighted average of the 14 < K < 16 and 16 < K < 18 bins). Including the

18 < K < 20 bin revises this figure downward slightly (to 153 ± 11 km s−1); however

in this magnitude range the proper motion error curve rises steeply with magnitude

(Figure 5), so objects this faint may be particularly vulnerable to misclassification bias.

5.3. Search for the cluster center

To decompose motions into radial and tangential directions, the cluster center must be

located. We therefore attempt to do so from the spatial variation of cluster velocity

dispersion, under the rationale that the peak in the velocity dispersion distribution

should coincide with the true cluster center (Anderson & van der Marel 2010). However,

the Arches cluster sample affords too few objects to accurately determine the cluster

center in this way (Figure 13).
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5.4. Limits on an IMBH in the Arches

In principle we can explore (xc, yc,Mbh) to constrain any central point-mass in the

Arches. In practice the upper mass limit may not be very great... Worth a look...

6. Discussion

6.1. Bulk Motion

In their study of the Arches bulk motion, Stolte et al. (2008) found that, although

the Arches is unlikely to be on a circular orbit, integration of its path through the

potential of the inner Milky Way indicated the cluster was unlikely to pass sufficiently

close to the GC to be a plausible source of the young stars in the very inner region of the

GC. Our revised motion estimate makes the Arches orbit slightly more compatible with

circular motion. Following the arguments of Stolte et al. (2008), if on a circular orbit,

v.r = 0 then demands enclosed mass only 1.5σ above that measured photometrically

(Launhardt et al. 2003). At first glance, our new bulk motion supports the conclusions

of Stolte et al. (2008) that the Arches is unlikely to be a source of young stars for the

GC star cluster. Integration of the Arches motion through the potential of the inner

Milky Way using our new motion determination is required to draw further conclusions

about the formation and subsequent motion of the cluster.

However, interpretation of the cluster bulk motion is complicated by two factors.

Firstly, differential rotation of the field component(s) may make the true field motion a

function of (unabsorbed) magnitude. In this scenario, the relative motion of the Arches

against the field should therefore vary with magnitude. Secondly, extinction variations

along the line of sight coupled with the low-number statistics (∼ few tens of field objects

in each magnitude bin; Table 7) may reduce the validity of a gaussian to represent the

field component in the first place. Thus our quoted error of 15 km s−1 on the Arches

bulk motion is likely an underestimate.

6.2. Velocity dispersion and mass

The present day kinematic structure of the Arches is likely to be somewhat discrepant

from the predictions of a single-mass, spherical, isothermal cluster model. Full

determination of the Arches mass probably requires simultaneous modeling of the mass

and velocity profile using high-quality data at least out to the tidal radius (the approach

in Schoedel et al. 2009), where models are projected onto the sky for comparison with

data at each step. That investigation is beyond the scope of this report. Here we provide

first-order estimates of the mass using two popular estimators, and briefly discuss where

their shortcomings lie.

Probably the most frequently encountered estimator when only the velocity

dispersion in the central region is available, is the core-fitting formula of King (1966);

ρ0 ∝ σ2
0/r

2
hm. For roughly isothermal, single-mass, spherical cluster models where the
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external potential is unimportant, this relation links the central density to the velocity

dispersion in the center. Adopting the mean velocity dispersion (> 4 M�) yields central

density ρ0 ≈ (3.7 ± 0.1) × 104M� pc−3. Within a volume 0.4pc in radius, this implies

mass (10.0 ± 0.2) × 103M�. We caution the reader that this estimate rests on several

conditions which likely do not hold for the Arches cluster. In the strong tidal field of the

GC region, the velocity dispersion outside the core region may be elevated, in which case

the velocity field observed in projection towards the core may be elevated. This would

cause ρ0 to be artificially high. In his critique of the core-fitting formula, Merritt (1988)

points out that the central velocity dispersion only relates uniquely to ρ0 if the shape of

the velocity ellipsoid is known at all radii; in the absence of this information, assuming

isotropy can lead to significant errors in the derived velocity dispersion. This mass

estimate Mhm may thus be incorrect by at least 50%, so we adopt (10.0±5.0) ×103M�.

We also tried the Leonard & Merritt (1989; hereafter LM89) mass estimator, which

relies on the observation that for a spherical, nonrotating cluster, the radial variation

of two velocity dispersion components is sufficient to determine the mass distribution

of the cluster. Assuming constant mass-to-light ratio with distance from the center,

we decompose the motions into radial and tangential motions from the cluster center

and the enclosed mass estimate M(R) produced from the LM89 relation. We have

high-quality data for the inner 0.2pc × 0.2pc, with five epochs used over a three-year

timebase. There is some uncertainty on the precise location of the center of the cluster.

The LM89 estimate was therefore determined for several choices of the cluster center.

Within the central 0.2pc, the M(R) profile rises steadily to about (11 ± 2) ×103M�.

(This estimate needs updating...)

Although these estimates have a number of shortcomings, they represent the first

kinematic mass measurements produced for this important YMC. Our two estimates

suggest a range (5− 25) × 103M� for the total mass contained within 0.4pc.

This range straddles the predictions from photometric studies of the PDMF, and

we are unable at this stage to definitively judge whether a top-heavy or truncated

PDMF really does obtain within the half-mass radius of the Arches. Of the three

possibilities (Salpeter, Salpeter but truncated, top-heavy), the enclosed mass estimate

(31 ± 6) × 103M� predicted by extrapolating a Salpeter mass function all the way

to the Hydrogen-burning limit is the least compatible with our data (Espinoza et al.

2009). Thus our motions admit the possibility that the IMF of the Arches may indeed

be truncated below 1 M�.

7. Conclusion

With uniform observational setup over a sufficient time baseline and careful accounting

for a number of sources of proper motion error, we have measured the velocity dispersion

of the Arches cluster for the first time. We have used this dispersion to test the

photometric estimates of the present-day mass function (PDMF) within the half-mass

radius rhm = 0.4 pc. The total mass within rhm is likely in the range (5− 25)× 103M�,
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Figure 1. Errors and magnitudes for an example epoch (2008.50). Top left and
middle: centroiding errors (i.e. intra-epoch repeatability; Section 3.1). Middle left
and middle: alignment errors (Section 3.3). Right column: magnitude histogram and
CDF.

which offers tentative support for either a top-heavy PDMF or a truncation in the

PDMF at low mass.

However, this mass estimate suffers from significant limitations. On the modeling

side, the Arches cluster may rotate, is subject to significant tidal shear which may elevate

the observed velocity dispersion, and may not be spherical. On the observational side,

we do not yet have sufficiently precise motions outside 0.2pc to constrain M(R) outside

this region, and have had to resort to an extrapolation of the well-measured inner field.

Observations of the outer fields due in summer 2010 should remedy this situation.

We have also revised the bulk motion of the Arches slightly downward. Our updated

motion of 170± 18.9 km s−1 is only slightly lower than the 212± 29 km s−1 determined

previously, due to two competing biases in the former work that nearly cancel each other.

Taken at face value, this supports previous conclusions that the Arches is unlikely to

pass within 10pc of the GC. Modeling of the path of the Arches through the inner bulge

/ GC potential will be the subject of a future communication.

Finally, we have provided the first estimate (to our knowledge) of the velocity

dispersion of the Bulge along such a close sight-line to the galactic center; of (102,

65) ± (10,7) km s−1.
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Figure 2. Five example positional time-series. Left columns show motion along X,
right columns along Y. Object IDs and K ′ magnitudes are indicated in the left top
and bottom corners respectively. The best-fit straight line to the motions are indicated
in each case, as are 1σ positional error curves. Object 154 is likely a field object, as
indicated by its large proper motion.

Figure 3. The distribution of adopted proper motion precision (Sections 3.5-3.6 and
Table 3). Outliers due to likely mismatches are indicated and removed. These panels
should not be identical - to be updated.
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Figure 4. Positional residuals after mapping of each epoch onto the adopted
reference frame, as a function of the polynomial transformation order adopted. Red
circles: reference frame used is the star-list in 2008.5. Black squares: reference
frame constructed by evaluating linear fits to the positional time-series for likely
cluster members. Errorbars were estimated by monte carlo using random half-samples.
Residuals are evaluated along detector X (top row) and detector Y (bottom row). We
note that (1). Order 2 improves the mapping significantly over order 1, while higher
orders are not supported by the data; (2). positions mapped onto the generated
reference frame (black) show similar or lower residuals (for all but epoch 2008.37
x) than when mapped onto an individual star-list (red).

Epoch (tint ×Ncoadd) Nimages Nuse FWHM Strehl N∗ N∗,uncrowd K ′max
(s) (mas) (mag)

2006 May 21 3.00 × 10 15 15 61.05 0.261 660 649 20.2
2006 Jul 18 3.00 × 10 52 38 56.95 0.349 657 642 20.6
2008 May 13 3.00 × 10 146 72 66.66 0.219 556 536 20.3
2008 Jun 01 3.00 × 10 89 83 54.96 0.373 845 810 21.2
2009 May 02 2.80 × 10 119 108 51.47 0.442 968 917 21.3

Table 1. Summary of observations. Reading left-right, the columns are: Epoch of
observation, the total integration time for each image, the number of images observed,
the number of images used, the median FWHM and Strehl ratio over the set of accepted
images Nuse, the number of stars measured within the mean image stack in each epoch;
the number surviving the cut on proximity to a known neighbour, and finally the
faintest magnitude measurement within the epoch.
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Figure 5. Formal significance of the fit improvement when transformations of
increasing order are used to map starlists between epochs. For each step up in order
M -1 to M , the false-alarm probability is shown that corresponds to random chance
producing a decrease in badness-of-fit at least as great as that observed (Section
3.4). This statistic is evaluated separately for residuals in X (green circles, solid
line) and Y (blue squares, dashed line). Left 2 × 2 panels: measured positions. Right
2×2 panels: the same test applied to a control experiment where the observed positions
are perturbed under the cluster and field motion distributions, and a second-order
polynomial of similar magnitude to that fit from the real data is added to simulate
epoch-to-epoch distortion variations. A polynomial of order 2 produces a formally
significant improvement in the fitting.
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Figure 6. Measured distribution of stars within the field of view, from the 2009.33
epoch. Completeness corrections have not been applied. Top: Surface density per
magnitude as a function of K ′, for three bins in radius (as pixels) from the center of
the frame. Bottom: Radial distribution of stars in three magnitude ranges; Poisson
error bars are indicated for the brightest and faintest magnitude ranges.
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Figure 7. Assessment of the distribution of χ2 from the velocity fits when motions
are fit using only centroiding and alignment errors. Columns break the sample of stars
into bright, medium and faint magnitiude bins. Histograms show the distribution of
velocity-fit χ2 values in X (blue; top-row) and Y (green;bottom row). The numbers
inset give the values of the chi-square test statistic per degree of freedom for the
comparison of the observed histogram to the predicted distribution (dashed curve).
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Figure 8. Example determination of the additive errors εx (left), εy (right), for objects
in the brightness range (10.0 ≤ K ′ ≤ 16.). For each trial additive error, the chi-square
test (top) and two-sided K-S test (bottom) are evaluated, with the minimum found by
fitting a polynomial to the trough.
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Figure 9. Additive error as a function of magnitude, for two orders of frame:frame
transformation. Black diamonds: X; blue squares: Y. Numbers inset in the left panel
give the sample size in each magnitude bin. When frames are mapped with a second-
order polynomial, the additive errors in each direction become more consistent with
each other.
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Figure 10. As Figure 7, for constant additive error (Top) and additive error computed
from a fit to separate determinations for each magnitude-range (Figure 9)
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Figure 11. Cluster-to-Field separation and the fitted velocity dispersion. Top row:
Fitted parameters with 1σ errorbars from Bootstrap Monte Carlo resampling of the
motions. Bottom row: component separation and error-corrected velocity dispersion
from simulated sets of motions, with a constant intrinsic dispersion and errors sampled
from the observed dataset, and with constant input separation (input parameters
denoted with green squares).
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Figure 12. CMD of the field of view and VPD for all objects with proper motion
error < 0.5 mas yr−1. (The CMD is limited by the depth of the H-band imaging and
thus spans a smaller magnitude range than the K ′ astrometric observations.) Objects
with Pcluster > 0.9 are shown in black. Likely-field objects falling in the shaded regions
in the CMD are denoted with squares in the VPD. Red circles in the VPD indicate
the six objects in the red shaded region in the CMD that show Pcluster > 0.9.
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Figure 13. Search for the cluster center using dispersions. Top Row: mean dispersion√
(σ2

x + σ2
y)/2 from independent bins of cluster members at K < 17.0. Bins are color

coded by mean dispersion. The right panel is similar to the left panel, but with the
bin centers dithered with respect to the left panel. Bottom: mean dispersion for strips
in X (left) and Y (right); here the black circles and blue squares indicate strip centers
dithered by half a strip-width with respect to each other. Inset numbers give the
sample size in each strip.
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Figure 14. Radial (top) and tangential (bottom) velocity dispersions for two choices
of cluster center, from cluster stars with K < 17. Left: cluster center coincident with
the frame center. Right: cluster center offset from the field center in (X,Y) by (-0.5,
1.5) mas. Inset numbers give the number of cluster members in each radial bin.

Figure 15. Culling of reference stars during the frame mapping process, in this
case mapping epoch 2006.54 onto the frame of epoch t0 =2008.50. Yellow points: all
matches. Black points: selected for magnitude (K ′ ≤ 17.5). Green points: reference
stars selected by position residual from the center of mass of the magnitude-selected
sample and with outlyers clipped during the mapping (in this plot the motions have
been shifted to the center of mass of the selected objects).
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Figure 16. Reduction in velocity error when frames are mapped onto a reference
list constructed from a first pass at proper motion fitting (2), over frame mapping
onto a single starlist at epoch t0 (1). The change in error is expressed as the ratio of
the difference between (1) and (2) to the original error (1). Reading left-right,panels
indicate errors along X and Y.
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K′ Centroiding, Alignment (mas) Additive Confusion Motion
2006.39 2006.54 2008.37 2008.50 2009.33 (mas) bias (mas) (mas/y)

10− 16
x 0.25, 0.09 0.10, 0.05 0.25, 0.06 0.06, 0.04 0.08, 0.03 0.16 ± 0.02 0.0 - 0.03 0.076
y 0.23, 0.08 0.07, 0.05 0.19, 0.08 0.11, 0.04 0.09, 0.05 0.15 ± 0.02 0.074

16− 18
x 0.41, 0.11 0.23, 0.05 0.40, 0.08 0.14, 0.05 0.14, 0.04 0.24 ± 0.02 0.03 - 0.10 0.130
y 0.42, 0.10 0.20, 0.05 0.43, 0.09 0.17, 0.05 0.18, 0.05 0.30 ± 0.03 0.153

18− 20
x 1.10, 0.11 0.92, 0.05 1.03, 0.08 0.60, 0.05 0.59, 0.04 0.59 ± 0.06 0.1- 1.0 0.378
y 1.38, 0.10 1.05, 0.05 1.35, 0.09 0.81, 0.05 0.77, 0.06 0.71 ± 0.08 0.478

Table 3. Astrometric error budget. For each magnitude bin, the top (bottom) row
gives errors in X (Y). For each star, centroiding, alignment and additive error describe
random variation between epochs. The effect of confusion bias on motions depends on
its variation between epochs; random variation is already included in the additive error,
while linear trends masquerading as spurious motions are expected to be . 10% of the
confusion bias across the epochs for all objects (Section 3.6).



LGS-AO Motions of the Arches 31

K 14.0-16.0 15.0-17.0 16.0-18.0 17.0-19.0

N 87 107 142 167

πcl 0.81 ± 0.044 0.72 ± 0.043 0.72 ± 0.038 0.59 ± 0.044

∆µ 3.95 ± 0.592 4.58 ± 0.495 4.96 ± 0.523 3.63 ± 0.449
(mas yr−1)

σa,f 2.32 ± 0.294 2.52 ± 0.236 2.92 ± 0.278 2.89 ± 0.275
(mas yr−1)

σb,f 1.50 ± 0.259 1.66 ± 0.243 1.81 ± 0.271 1.80 ± 0.158
(mas yr−1)

σa,cl 0.16 ± 0.022 0.17 ± 0.040 0.17 ± 0.031 0.23 ± 0.073
(mas yr−1)

σb,cl 0.14 ± 0.014 0.15 ± 0.014 0.16 ± 0.021 0.16 ± 0.051
(mas yr−1)

θf -58.87 ± 14.766 -61.34 ± 12.702 -54.02 ± 10.269 -61.97 ± 6.442
(o)

σb,cl/σa,cl 0.83 ± 0.106 0.89 ± 0.095 0.98 ± 0.121 0.69 ± 0.185

σb,f/σa,f 0.65 ± 0.109 0.66 ± 0.109 0.62 ± 0.113 0.62 ± 0.085

Table 4. Fitted kinematic parameters of cluster and field. For each magnitude
range, rows give: the number of stars, the cluster fraction, the separation between
cluster and field centers in the VPD, the semimajor and minor axes of the field, the
semimajor and minor axes of the cluster, the orientation of the field component, and
the semiminor/major axes of the cluster and field. Errors are estimated from Monte
Carlo simulations.
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K N σx σy σx σy

(mas yr−1) (mas yr−1) (km s−1) (km s−1)
10.0-14.0 67 0.130 ± 0.017 0.123 ± 0.016 4.912 ± 0.639 4.680 ± 0.593
14.0-16.0 72 0.161 ± 0.019 0.129 ± 0.016 6.088 ± 0.739 4.878 ± 0.606
16.0-18.0 107 0.177 ± 0.027 0.180 ± 0.030 6.721 ± 1.034 6.839 ± 1.142
18.0-20.0 97 0.224 ± 0.039 0.148 ± 0.046 8.508 ± 1.498 5.629 ± 1.753

Table 5. Arches velocity dispersion in each co-ordinate. Reading left-right, columns
are: Magnitude range of interest, number of cluster stars in this magnitude range,
intrinsic velocity dispersion and error in each coordinate, first in mas yr−1 and then
km s−1 assuming the Arches is at 8 kpc.
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Appendix A. Production of motions from star-lists

Here we provide details of the procedures used to produce proper motions from the

star-lists. The steps are:

1. Choice of initial reference stars, and initial mapping onto t0 : An initial list was

constructed of eleven bright stars that were well-measured in all epochs and cover the

full area of the detector, and used for the initial registration of each epoch onto t0 =

2008.5. This epoch was chosen because its starlist is of high quality (Tables 1 & 3) and

this time will be near the pivot point of the straight line fits to most of the positional

time-series. A 6-term linear transformation was used for this mapping for each epoch,

accounting for positional shift, global scaling, rotation, a difference in scale factors in X

and Y (“on-axis skew”) and differences in the angle between axes (“off-axis skew”).

2. Matching of all stars within t0 : Using this initial mapping, all stars were

matched to their counterparts in t0 (where present) by proximity in t0 and magnitude.

Matching radius 5 pix (approximately the PSF core FWHM) and a broad magnitude

tolerance 3 mag were used. This yields positional differences between predicted and

observed positions (hereafter “deltas”) in t0 for matched pairs using the first-guess

transformation.

3. Fitting of reference-frame mapping for matching: The previous step typically

produces deltas for ∼ 300 stars at K ′ < 17.5 across each pair of epochs (t-t0 ). The field

population displays significant motion dispersion in a preferential direction close to the

galactic plane. Field objects must therefore be removed from the sample of reference

stars to avoid biasing the offsets and magnification factors when mapping the reference

frames. From the positional deltas of reference stars, the center of the distribution in

the vector point diagram is estimated and the standard deviation of motions in each

direction from this center of mass estimated. Objects farther than 2σ from this estimated

center of mass are removed. This process is repeated twice to produce a cleaned list

of reference stars; typically 260 objects survive this process. These objects are used to

re-map the epochs onto t0 using a full 6-term linear transformation. Clipping of outliers

in this epoch mapping typically removes a further 30 stars in each epoch (Figure 15).

4: Trim coincident close pairs of stars: At this stage we have the master-list of

measurements of each object, in the frame in which the object was originally measured.

To mitigate confusion by known objects as much as possible, all coincident pairs with

separation < 75 mas are removed from consideration for each epoch. This typically

removes 20-40 objects from the position-lists at each epoch (column N∗,kept in Table 1).

The result is a matched catalogue of 1114 objects present in at least two epoochs.

5. Reference frame-mapping for motions: Armed with the matched list of objects

and their measurements at each epoch, likely-cluster members (at K < 17.5) are used as

reference stars to map each epoch onto t0 , using the same weighting and clipping as step

3. We find (Section 3.4) that a second-order transformation in X and Y is sufficient to

capture most of the residual higher-order effective distortions between epochs without

falling prey to overfitting of few stars with a high-order transformation.
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6. Motion extraction in t0 : A first pass at stellar motions is estimated by fitting

a linear trend to the positional time-series x(t), y(t) of each star in the reference frame

t0 . For each star, the weighted mean time t̄ =
∑

i tiwi/
∑

iwi is evaluated so that

the fit becomes x(t) = a + b(t − t̄). Weights wi = 1/σ2
i are the inverse of the variance

of each measurement due to positional uncertainty. This removes correlation between

errors in the parameters (e.g. Press et al. 1992); the center of mass of the data is

first determined then the slope pivoted about this point to find the best-fit positional

gradient. (The covariance matrix of the fit for each star is reported in Table X). The

proper motion error is the formal error on the best-fit slope: σ2
b = 1/

(∑N
i=1

(t−t̄)2
σ2

i

)
.

To mitigate sensitivity to short-term excursions in position, for objects measured in

≥ 4 epochs, two passes of sigma-clipping at 3σ are applied. Note that t̄ is a property of

σi(t) and thus is estimated separately for each star and for each co-ordinate. Motions

are estimated for all 805 stars with ≥ 3 epochs of measurement.

7. Refinement of the reference position-list: When choosing a reference frame in

which to evaluate motions, our goal is a reference-list onto which cluster members can

be mapped with as little scatter as possible due to measurement and fitting error.

We generate a reference frame by evaluating at some time tref the straight-line fits to

the positional time-series of cluster reference stars. Positional errors in this predicted

frame (“predictive errors”) are evaluated by propagating the errors on the fit coefficients

a, b for each star. By choosing tref to be near the pivot point t̄ of the greatest number of

reference stars, we aim to minimize the error of the predicted positions in the constructed

reference frame. The distribution of t̄ is nearly Gaussian with t̄ = 2008.0 ± 0.4 (1σ); we

therefore adopt tref = 2008.0 to evaluate the reference epoch. To evaluate the degree

to which this mean reference frame improves the mapping, motions and their errors

for each star were evaluated using the quad sum (centroiding + alignment) errors when

mapped to t0 and (centroiding + alignment + predictive) when mapped to tref . Motion

errors are improved by up to 20% for some bright objects, with median improvement

up to 4% for well-measured objects (Figure 16).

8. Re-mapping and re-extraction of motions: Finally, the star-list from each epoch

is mapped onto the constructed reference-frame tref and motions in this frame evaluated

in the manner of Step 7. Table 2 gives the fitted parameters and the number of reference

stars used in the mapping from each epoch to the tref frame. Provided the motions of

cluster stars in the field of view do not themselves describe a second-order or lower

transformation (e.g. rotation or contraction of the cluster) to within our ability to

determine, then the parameters taking reference frame 2008.50 to t̄ should be consistent

with zero, as is observed (Table 2). We find that, when applied to stars near the edges of

the detector, the size of the positional shifts due to the quadratic terms in the mapping

are 1-few times the centroiding error for bright (K ′ < 16) objects (Table 2).

9. Evaluation and incorporation of additional error sources: The distribution of fits

to the velocities thus produced were examined for additional sources of random error.

It became readily apparent that a significant source of error along the time-series was

not taken into account by the steps above. When characterised (Section 3.5), steps 6-9



LGS-AO Motions of the Arches 35

were repeated with this error term included.
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