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ABSTRACT

The stalling radius of a merging massive binary black holBHBis expected to be below
01 even in nearby galaxie¥f 2002, and thus BBHs are not expected to be spatially re-
solved in the near future. However, as we show below, a BBH Ineagietectable through the
significantly anisotropic stellar velocity distributionproduces on scales 5-10 times larger
than the binary separation. We calculate the velocity ibistion of stable orbits near a BBH
by solving the restricted three body problem for a BBH emlgedich a bulge potential. We
present high resolution maps of the projected velocityrithistion moments, based on snap-
shots of~ 10° stable orbits. The kinematic signature of a BBH in the avenagocity maps

is a counter rotating torus of stars outside the BBH Hill speeThe velocity dispersion maps
reveal a dip in the inner region, and an excess of 20-40%duatlt, compared to a single BH
of the same total mass. More pronounced signatures are rsé¢lea third and fourth Gauss—
Hermite velocity moments maps. The detection of these sigesimay indicate the presence
of a BBH currently, or at some earlier time, which dependsharéate of velocity phase space
mixing following the BBH merger.

Key words: black hole physics — galaxies : nuclei — stellar dynamics.

1 INTRODUCTION

The discovery that most galaxies harbour a massive black hol
(BH) at their core llagorrian et al. 1998 and the commonly ac-
cepted interpretation of cosmological structure fornrasamula-
tions, that galaxies grow by mergers (eigauffmann et al. 1993
cf. Dekel & Birnboim 2006that growth is mostly by gas accre-
tion) implies that massive binary black holes should comignon
form at the core of galaxie&/¢lonteri et al. 2003 Unlike the pre-
vious view, that the formation of such a binary results frdre t
rare process of merging during the life of the rare objeatssars
(Begelman, Blandford & Rees 19B80Dynamical friction on the
background stars leads to inspiral of the binary on a dynalmic
time-scale, until the binary becomes hard, which occursoatary
separation close to
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" 1+q 402’

@)

whereG is the gravitational constank/, is the mass of the pri-
mary BH,q is the mass ratio of the BHg K 1), ando is the bulge

1D velocity dispersion. The inspiral rate slows drasticailhen

a < a, (e.g.Merritt 20069, and further inspiral is set by the rate at
which stars diffuse in phase space into the loss cBrenk & Rees
19761. The minimum phase space diffusion rate is set by the two

* E-mail: ym@physics.technion.ac (¥ M);
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1 More properly termed the loss cylinder, as pointed out by
Cohn & Kulsrud(1978. See als@4.1below.
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body relaxation rate. This mechanism may be fast enoughen th
lowest luminosity bulges, where the stellar cores are thesekt,
and may lead to merger through gravitational wave emissitesis
than the Hubble time (but see recent suggestions that tleedeor
sity in the Milky Way is smaller than originally thoughijerritt
2010and references therein) . In more luminous bulges, the inar
inspiral is expected to stall (e.f¢flakino & Funato 2004 Merritt
2006h and references therein), leading to the final parsec prob-
lem Begelman et al. 1990The largest plausible stalling radius in
the nearest galaxies is just belo®l10(Yu 2002, and is thus gen-
erally unresolved. The stalling may be overcome by diffnsid
orbits into the loss cone induced by tangential forces.€Eitlue to
bulge triaxiality or bar like structure, or by massive pebogrs in
the form of molecular clouds or a third BH due to another merge
(e.g. Merritt & Poon 2004 Berczik et al. 2006 Hoffman & Loeb
2007 Alexander 2007 Perets & Alexander 2008 Alternatively,
inspiral may be induced by angular momentum loss of the BBH
to circumbinary gas (e.g\rmitage & Natarajan 2005Vayer et al.
2007 Cuadra et al. 2009 These processes may lead to a merger
on time-scales well below the Hubble time.

The formation process of the BBH ejects stars from the bulge.
This occurs on scales significantly larger thap) and it flattens
the stellar density profile. This BBH “scouring” may be respo
sible for the formation of the core present in luminous éltipls
(Milosavljevic & Merritt 2001; Merritt & Milosavljevi¢c 2005. Re-
cent high quality observations l§ormendy & Bende(2009) indi-
cate a remarkably tight correlation between the deduced oefs
ciency in the core region, and the black hole mass. This latioa
is likely a signature of the cumulative scouring effects @rging
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BHs during the BH growth. Are there any other signatures ¢edu
by the merger?

If the binary stalls, then a significant fraction of galaxieay
harbour a compact BBH (e.yblonteri et al. 2008 which cannot
currently be directly resolvedY(t 2002. The binary affects the
stability of stellar orbits on scales up to several timegédarthan
the binary separation. The presence of a binary may thus-be in
ferred through its signature on the background stellaridigion
and kinematics (e.dcappellari & McDermid 2005Kandrup et al.
2003). The purpose of this paper is to determine this sigaatnd
provide a tool which can be used to detect the effect of a pinar
black hole on scales 5-10 times larger tlagna scale which may
be resolved in nearby galaxies with current angular reulst

We first explore the stability of orbits near a BBH by calcu-
lating stability maps. These maps present the time it takes f
test particle to become unbound, as a function of its pasiiio
velocity space, at a given launching radius. A similar cpa@p-
pears inWiegert & Holman(1997 in the context of small bodies
near a binary stellar system, but the coordinates usedwerethe
semi-major axis and the inclination of the orbit, which ared rel-
evant for the kinematic signature explored here. The stabilaps
elucidate how the velocity phase space populated by stabits o
evolves with integration time, and how it varies with distarirom
the binary. The maps shows how the velocity distributiorcfiom
f(v) evolves from a smooth isotropic function at a distance ay,,
to a highly anisotropic function, which produces the BBHekin
matic signature.

We derive the BBH kinematic signature by integrating orbits
of test particles around a massive BBH, i.e. by solving th&ricted
3-body problem, for a binary in a circular orbit, embeddedain
bulge potential. We take snapshots of the system once ibappes
a steady state, and produce maps of the projected distriibotithe
stars and their velocity distributions. Similar scattgraxperiments
were already done in the past (eills 1983 Mikkola & Valtonen
1992 Quinlan 1996 Sesana et al. 200.7The purpose of these stud-
ies was to derive the effect of the stellar background on tBei B
merger rate, while our purpose is the reverse, to derivefteete
of the BBH on the background stellar population. The latsdcie-
lations were already carried out Bilosavljevic & Merritt (2001)
based orN-body simulations. These simulations were limited to
N < 10° and cover a region more than3L@arger thanay, thus
they do not allow accurate mapping of the projected line ghtsi
velocity distributions (LOSVDs) on scales of a few timag as
done here. Since the background stellar mass withins neg-
ligible (see below), and 2-body scattering cross sectioassll
small,N-body simulations can be replaced by the much faster scat-
tering experiments. These experiments allow us to probstéikar
kinematics with a roughly Tohigher resolution, in the relevant re-
gion, compared tMilosavljevic & Merritt (2007). In §3we present
the method of the calculation, and $4 we present results on the
phase space stability regions, maps of the projected weldisitri-
bution moments, velocity moments along some slit positivas-
ous LOSVDs, and also stellar density profiles and projecéssity
maps. The results are discusse@fnand summarized iB6.

2 MODEL
2.1 Orbital Elements

The two BHs are assumed to be in circular orbits inxheplane,
about their centre of mass @ty) = (0,0). The orbital period, the

relative velocities, and radii are:

T = 2"‘/ﬁi+q) ©
v = JareSk 3)
- ()
- (e

wherea is the binary separation, corresponding to the stalling ra-
dius. We takea = ay, i.e. the stalling separation is the hard bi-
nary separation (defined in equatiGh The recent simulations
of Merritt (20069 (table 1 there) indicate that the stalling radius
agrees withay, to typically 20%. Combining equationg)(and @)
gives:

2(1+0)
Va

The physical scales are set by specifying two parameters,
say M, andV. However, sinceM, and o are correlated through
the M-o relation Gebhardt et al. 20Q0~errarese & Merritt 2000
Tremaine et al. 20Q2and citations thereafter), only one parameter
is required. We use the recdatiltekin et al.(2009 relation:

\
> ®)

logMg = 0.12-0.08+ (4.24+0.41) log 0200 @

whereMg = M, /1% M, andasgp = 0/200 km s1 which gives:
an = (31+03) ?qq MQ530.05 ®)
— (35+03) qu 02245041 e ©)

Thus, the binary separation is expected to be on the parsée sc
Similarly, the orbital period is:

1.5
T — (55+03)x10" (lq+ 72 MQ-29+003 y (10)
q*° 1.24+0.1
= (50+03)x10* Arqelao YT (12)

Thus, a characteristic orbital time-scale of‘];ﬁzars, with a rela-
tively weak dependence on mass.

2.2 Model Units

For the sake of simplicity, we use the following valués= 1,

M. = 1, anda = 2. To convert back to physical units, one needs
to specify the physical value d&fl,; and then the length, which is
measured in units @, /2, is given in parsecs by equatid) (Time

is then measured in units ¢4 /8GM, )*/2 and velocity in units of
(2GM, /a,)Y/2. Alternatively, the conversion from dimensionless
to physical units can also be made using the value,gf.

Note that models with differemcorrespond to different phys-
ical scales for the same mass scaling (see equafidrablel gives
the physical scales of the model units fdg = 10° M, andq =1
and 0.1 used below. Also note thain model units is a function of
g only (equatiorb).

© 2010 RAS, MNRASD0Q, 1-18
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Table 1. The orbital elements in model units and physical units. Téve c
version is forM, = 108 M., and the conversion factors are listed in the
lower part of the table.

q=1 q=01
Expression Model  Physical  Model Physical
a 2 2 1.55 pc 2 0.28 pc
T 4m ﬁ 1257 12783yr 16.94 1336 yr
Vv 149 1 745km/s 074 1296 km/s
g s 0.25 186 km/s 0.11 186 km/s
Length 1 0.78 pc 1 0.14 pc
Time 1 1017 yr 1 79 yr
Velocity 1 745 kml/s 1 1747 km/s

2.3 Bulge Properties

The BBH is embedded in an isothermal sphere, i.e. the veloc-
ity distribution of the stars is a Maxwell-Boltzmann dibtrtion
f(v) = APexp¥"/20° wherev is the magnitude of the velocity,
Ais a normalization coefficient. The assumed stellar dernsity
file is p(r) = 02/2nGr?, the self-consistent solution for a singular
isothermal sphere. This is only an approximate solutioraffinite
mass bulge, and is not appropriate within the BH sphere af-infl
ence. Here we usé(v) and p(r) as convenient initial conditions
for the stellar distribution close to the BBH. Alsp(r) allows a
convenient representation of the bulge potential, andrigsingly
accurate for the average properties of massiv8 & 1010 L) el-
lipticals, within their effective radiuskpopmans et al. 2009 To
avoid the non physical divergence pfr) atr = 0, we assume a
core structure:

Po r<h

n\2

Po (F> r>h

whereh is an arbitrary break radius and

p(r)= 12)

g2

2nGh’
The integrated bulge mass derived from the above densityi§el

M(f)—{

The expression for the gravitational potential (i.e. thigbiypoten-
tial) is:

p0:

20?

i r<h
L (3r—2h) r>h

~ (13)

o) ng r2 r<h 14
bulgell') = 2
o Z[&+2m(f)-1 r>n

The N-body merger simulations dfflilosavljevic & Merritt
(200)) indicate that at the time the binary becomes hard, for a shor
while, anr—2 density profile extends down to the scaleagf. We
therefore assumle= a/2 (in model unitsh = 1, but note the final
larger core radius produced at the end of the simulatiomHrere
on, we work only in model units (defined §2.2).

The calculations of the binary orbital elements (equatibig

2 Though this is not necessarily a realistic result, givensimall number
of 10° stars interacting with the BH in their simulation withipg, and the
implied very short relaxation time.
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ignores the bulge mass within the BBH orbits. The enclosessma
within the radius of the secondary BH (equati®n which resides
outside the uniform density core, is:
q(2-q)

T 6(1+9?
Thus, M(Ry) < 0.04M,, and the bulge mass was therefore ne-
glected in the derivation &f andT made above.

The bulge mass grows linearly withand becomes larger than
the combined BH mass at:

M(Re) (15)

Finfl = %6 + % +44q. (16)
This definition of the radius of influence differs somewhatnr
the commonly used definition &M, /a2, or 8/q+ 8 in the model
units. Forq =1, rin &~ 17 and forg = 0.1, rjng ~ 49; but note that
in physical units the latter number is smaller (see TableThe
apparent divergence of; for g — 0 results from the divergence
of V asan — 0 (equationsl, 3). Below we also simulate orbits
around a single BH, for the purpose of comparison. This satieh
is designated as thg = 0 case, but we do not use thebased
normalization, due to its divergence.

3 METHODS
3.1 Orbit Integration

The orbit of each test particle (representing a star) isesbiwsing a
5t order Runge—Kutta method with adaptive step size contfw. T
fractional error tolerance in the code was set to® @urther lower-
ing this value had no detectable effect on the results. Theracy
of the calculation was also verified through conservatiatstef
the value of the Jacobi integral, a constant of motion in theutar
restricted 3-body problem.

The integration for each particle was terminated if it resth
re = 200. Integrating to higher values of,, up to ~ 3 x 103,
yielded negligible effects on the results presented bekawup-
per limit on the physical distance of the order-fl0® pc is also
expected as tangential forces produced by various dengfiom
the pure spherical symmetry, assumed here, become motg like
and more effective in changing the particle’s angular mdoman
when moving far away from the centre.

The integration was also terminated if the particle reached
lidal = 103 from either BHs. This represents the tidal disruption
of the star by the BH (the orbit is than termed as “crashedie T
true tidal disruption radius is. (2Mgy /m, )Y/3, wherer, is the ra-
dius of the star, which is about two orders of magnitude senall
than assumed here. However, settipgy = 103 was enough to
set a negligible rate of stellar depletion compared to the ohes-
cape from the system (reaching), and thus led to a negligible
effects on the results. Reducing furthiggz was also expensive in
computing time, and was therefore avoided.

The integration was usually stoppedtat 10*, which cor-
responds to~ 800 revolutions for g = 1 binary, or a physical
time-scale of~ 107 years. Orbits that have neither diverged (es-
caped) nor crashed before the end of their integration wefiaet!
as “stable”. We also investigated the effects of extenduegotrbital
stability tot = 108, i.e. extending to 1Dyears. As we show be-
low, most unstable orbits diverge on a few orbital time-ssahnd
a steeply decreasing fraction of the phase space volumepis- po
lated by unstable orbits with increasing time-scale.
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3.2 Simulations

To better understand the effects of a BBH on the LOSVDs, we firs
explore the evolution with time of the regions in velocityaske
space populated by stable orbits, as a function of distance the
BBH. For this purpose we us#ability maps(see84.1). In these
maps, a fixed spatial position is chosen as the particleisiraga
point, and a 2D grid of initial velocity vectors in a certaitape

is created. Each grid point is integrated ug te 10%, ort = 18,
and if the integration is terminated earlier, the grid paéntagged
according to the time it took for the orbit to terminate (led,

Or riigal). The stability maps are also useful for understanding the
effects of various parameters (e.g. the bulge potentiafjhenor-

bit stability, and are also a tool for the code developmentaie
inaccuracies and bugs throughout parameter space).

The stability maps do not produce directly observable tesul
For this purpose we performed 3D Monte Carlo (MC) simulation
to derive the observable kinematic signature. The init@ifoons
of the particles in these simulations were drawn randomdynfa
p(r) O r~2 distribution up tormax = 60. It was verified that parti-
cles which were initiated afnax > 60 (using a shell 6& r < 80)
made a negligible change in the results. The decreasingt effe
outer regions is expected since the line of sight integnatibthe
r—2 stellar distribution scales as®. For the sake of simplicity we
did not introduce a flat core at< h =1 to the initial MCr—2
distribution, as the < 1 region is only relevant for the spatially
unresolved stellar population within the Hill sphere ofte&d.

In velocity space, initial distributions in each directiorere
drawn from a normal distribution with variancg, or equivalently
a Maxwell-Boltzmanrf (v), as noted ir§2.3 A position dependent
cutoff was applied so that| < Vese Wherevescis the velocity re-
quired to reach. from a given point in space (therefore, the initial
f(v) varies slightly with position). This cut is only for the sa&e
convenience, as all orbits with| > vesc are found to be unstable
(see the stability maps i#4.J).

Orbits residing within the Hill spheres of the two BHs, with a
total energy below the minimal potential energy at the Lagian
points (as measured in the corotating system), cannot esédp
these orbits are therefore bound, but stars may be desttioyadyh
tidal disruption (se€Chen et al. 2000 which is beyond the scope
of this study (se&3.1). Because of the high accelerations in this
region, the integration time of a single orbit can exceed fgpneor-
ders of magnitudes the integration time for an orbit outsiaeHill
spheres. We therefore separated each simulation into txg pae
for initial conditions withinr < 2 which includes almost all the Hill
sphere orbits, and the other fox2r < 60, which includes almost
none. The two datasets were pieced together with the apatepr
weights for arr —2 distribution.

4 RESULTS
4.1 Stability Maps

Figurel presents cuts in phase spaceder 1. Each point (or pixel)
represents the initial velocity conditions of an orbit. Aitehpixel
represents an orbit that neither diverged nor crashed ghaut its
integration; the orbits were followed to= 10°. Non-white pixel is
an orbit that became unstable at a time indicated by the dodou
The upper and lower panels represent particles launchedxte
5,10, respectively; in all panely, z) = (0,0). The cuts in velocity
space are in the-vy plane, for orbits wittv, = 0 (i.e. purely planar
orbits). A total number of 256orbits were calculated in each map,

ki
\>\
>
ki
~
>>\
-10 -05 0.0 05 10
Vx/Vesc
I i | \
103 10* 10° 106

Figure 1. The evolution of the stability maps with time, uptte= 10°, for
aq= 1 BBH. The horizontal and vertical axes correspond to thainiy
andvy velocities, normalized by the locsisc (Wherevesc = 1.31,1.06 for
x = 5,10). The orbits are launched from a point along #haxis: x = 5
(top panel) anc = 10 (bottom), withv; = O (planar orbits)vy is therefore
the tangential velocity, and positive values of which beglda corotating
orbits. The colour indicates the survival time of each oMMhite represents
stable orbits (survive to > 10°). The black lines bound the orbits within
the classical loss cone. Note the near convergence of thie steeas for
t > 10°. Below we integrate ta = 10*, which corresponds to & 10%
overestimate of the area in phase space occupied by stdtite or

where in each axis grid points are uniformly spaced in thgean
—Vesc< Vi < Vese Note thatvescdiffers depending on the launching
radius (see caption).

All particles withv? = v +VZ + V2 > v3s.are unstable, as in-
dicated by the circular boundary of the stable region, witiak
a radius of unity (Fig.1l). Note that some orbits withr > Vesg
which start inwards\i < 0), do not escape immediately, in con-
trast to the outgoing orbits > 0). The orbits which start inwards
with v > vesccan be temporarily trapped by the BBH, and wonder
around on chaotic orbits. However, chaotic orbits are iahidy un-
stable, and they inevitably lead to escape or a tidal digyopin
time-scales of 1910° for these orbits.

The solid black lines correspond to the initial conditioes r

© 2010 RAS, MNRASD0Q, 1-18
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quired to reach a pericentre distaﬁm%eri, of rmin = 1, assuming a

purely central force (i.e. the two BHs are taken to be a sipglat

source; the bulge force is unchanged). The line shape is biye
2[®(x) — P(rmin)] + V2

W= # (/)1

where®(r) = Ppyge(r) — (1+0)/r is the total potential, and the
bulge term is given by equatioi4).

The orbits arrive to~ rpyin, interact strongly with one of the
two BHs, and are flung out. For negative valuesiypfcorrespond-
ing to retrograde orbits (i.e. opposite to the BHs’ rota}jane
black lines fit well to the boundary of the stability regiort at 10*
(especially for the largar, where the tangential part of the force is
small). A similar boundary is seen at positiyg but corresponds to
higher angular momentum than expected from the simplified lo
cone solution.

As the integration time increases, fram= 10° to 1(°, the
boundary of the stable regions in Figcontracts. Atx = 10 there
is a roughly uniform reduction in the stable area with eachfoéd
increase in time, indicating the reduction in area dropsibig-
mically with time. Atx = 5 there is a similar trend in the area of
the stable retrograde orbits, but the prograde orbits arezughly
stable beyond = 10°. The simulations described below were car-
ried out tot = 10%, as the results get reasonably close to conver-
gence on this time-scale. The asymmetry, which produceBBie
kinematic signature discussed in this paper, increaseswsbat on
time-scales longer than 40if the system is allowed to evolve fur-
ther, the kinematic signature will be somewhat enhancet reit
spect to the results far= 10%, presented below.

In Figure 2 more phase space cuts are presented, for orbits
followed tot = 10*. The greyscale indicates the time of instability
while white pixels are stable. The left, middle, and rightucons
represents particles launched from- 3,5, 10, respectively; in all
panels(y,z) = (0,0). The upper row shows cuts in velocity space
in the vx-vy plane, for orbits withv; = O (purely planar orbits); the
lower row shows cuts in the,-v, plane, for orbits withsy = O (ini-
tial velocity tangential). Here a blue line indicated thed®rs of
the classical loss cone region.

With decreasing launching radius, the radial orbits getemor
depleted, and the tangential orbits develop a growing asstmym
At x = 3, only retrograde planar orbits remain.

These plots demonstrate that the “loss cone” term, coined by
Frank & Reeq1976) is inaccurate. The unstable orbits occupy a
loss cylinder as pointed out byoohn & Kulsrud(1978. The loss
cylinder grows asymmetrically towards the centre, and dareis
most of the phase space volume at 5.

The least stable orbits, apart from those on direct coflisio
paths with one of the BHs' tidal radii, are the retrogradetsrjoist
outside the boundary of the classical loss cone, noted blpwirer
blue lines in Figs2 and3; these orbits appear as dark grey pixels in
the stability maps, as they escape on short time-scaleseTdbits
lead to head on collisions with the approaching BH, and thesst
are flung out immediately. However, once the pericentreadist
of the retrograde orbit igperi > I'min (Orbits below the lower blue
line), i.e. the orbit is outside the classical loss coneBRHs cannot
deflect the star appreciably, and the orbit becomes stablengn
time-scales. Torquing by the binary on the star changesdlsague

; 17

3 We use the term pericentre distance to describe the raditie aflosest
point of a star from the centre of the coordinate system.

© 2010 RAS, MNRASDOQ, 1-18

to their large relative velocity with the star, and the negte tends
to cancel out in each close approach of the star.

In contrast, prograde orbits close to the classical loss ecoa
flung out on longer time-scales. In this case the star aphesathe
receding BH and the relative velocity is small; the star igjsct to
a nearly steady torque by the binary, which leads to someggner
gain. Repeated close encounters build up the energy of #ne st
until it is ejected. The further away the pericentre distais; the
smaller is the energy gain, and the longer it takes the staritd up
the ejection energy. This leads to a gradual increase ingta&pe
time, moving away from the prograde classical loss cone tiayn
Another possible scenario is that prograde orbits closkealas-
sical loss cone do not gradually build up their energy, biltteaare
on quasi-regular orbits with a nearly fixed energy, i.e. oactic
orbits with a longer Lyapunov time, which increases withafice
from the centre. Once the orbit becomes chaotic, a disripidad
on collision with one of the BHs is quick and inevitable.

The same concept is also illustrated in Fig@ebut there
g=0.1 and thusnin = Ry = 1.8, the orbital radius of the secondary
BH (see equatioB). The larger i, in theq= 0.1 case, leads to a
larger loss cone region, relativevgs, and thus to a smaller area in
phase space available for stable orbits. Thus<al binary leads
to a larger effect on the orbits stability compared w-a 1 binary.
However, in the limitg — O the effect of the secondary clearly dis-
appears.

4.2 The Projected Kinematic Signature
4.2.1 Monte Carlo Simulations

Four MC simulations were carried out to calculate the prejgc
LOSVDs. To increase the statistics for the kinematical nsdyosvn
below, we took a number of snapshots of the system at differen
times; all snapshots were taken at times in which the BHs had t
same orbital phase (position on tkeaxis). The snapshots were
taken close to the end of the integratiort at 10*, where the sys-
tem was closest to a steady state solution, and were spatiatein
by one BBH revolution to ensure significant offsets of thesstee-
tween snapshots.

The simulationsnain andmain, are forq= 1. Inmain, the
binary is observed along tlyeaxis (edge-on) and the BHs are max-
imally separated to the observer (side-view).mkin, the view
is along thex-axis so the BHs are along the line of sight (front-
view). In these two simulations = 0.25 (see Tablé). Simulation
ratio is forq= 0.1, for an edge-on side-view. In this calculation
o0 ~ 0.11. The simulatiosingle is for a single BH, located at the
origin (i.e.q = 0); we useds = 0.25 for it. Note that for this case,
the binary separatioa has no meaning, and thus there is another
free parameter to determine the physical scales of therayste

Table 2 lists for each simulation the total number of orbits
integrated, wherd&l (inner) andN (outer) refer to orbits initiated
atr < 2, and 2< r < 60, respectively (se€3.2. The values oN
were set to be large enough to minimize the statistical rioisiee
results, and may be well above the number of stars contnigpuci
the observed stellar spectral features in typical galaxies

Table2 also gives the fraction of the orbits which are classi-
fied as divergent (reaching,) or crashing (reachingqa). This
fraction was calculated by giving the weights to the innet auter
datasets, expected from the? density profile. They= 0.1 simu-
lation has~ 30% more diverging orbits, and twice the fraction of
crashing orbits than thg= 1 simulation. However, the total bulge
masses of the models are different (dependingsdnand there-
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Figure 2. Stability maps for cuts along different planes, as a fumctd distance from the centre. In both rows, the orbits argestaon thex-axis and are
launched fromx = 3 (left column),x = 5 (middle) andx = 10 (right). The integration time is= 10%, for aq = 1 BBH. The upper panels represent orbits in
the x-y plane {, = 0), and the lower panels orbits start in the plane { = 0), i.e. start as purely tangential. Greyscale indicatesstirvival time of each
orbit, and the white areas are stable orbits The panels s@nitial velocities normalized byesc (= 1.57,1.31,1.06 for x = 3,5,10). Note the decreasing
area of stable prograde orbitg, (> 0) with decreasing distance from the binary. Almost onlyagtade orbits are presentat= 3. The blue lines represent

the border of the classical loss cone. It reproduces faigif the boundary of
for the prograde orbits, alreadyat 10. The dashed red line represent the

fore these fractions translate into different mass defi€its the

g = 1 simulations, the total bulge mass ahx = 60 wasM ~ 7.42
(see equatioi3). The relative mass deficit due to diverging orbits
in these simulations is therefoMget/M12 ~ 1.01, whereM, is
the combined BH mass,#q. For theq = 0.1 simulation, the to-
tal mass armax wasM ~ 1.35, and the mass of diverging orbits
was Mget/M12 =~ 0.45. The larger fraction of diverging orbits for
g = 0.1 results from the lower bulge contribution within the biar
orbit, as expressed by the loweyV, which allowed more orbits
to reachr > ro. As expected, the twq = 1 simulations yield the
same fraction of divergent and crashing orbits, as therdiffee is
only in perspective, and the statistical error is small g/ou

The fraction of 10°° orbits which diverged in the = 0 sim-
ulation results from the numerical error in energy consiwa
which allowed this fraction of orbits withr < vesc to become un-
bound. The fraction of crashing orbits is a factor of 3 to 6esm

the stable retrograde orbits, in padicin thex-y plane, but fails significantly
figedf the isothermal Maxwell-Boltzmanh(v) used below.

smaller than in the) > 0 simulations. This demonstrates qualita-
tively the enhancement of a BBH on the tidal disruption rate.(
Chen et al. 20082009, though the exact numbers are not valid
given the high value ofijgy used here. In theg = 0.1 simula-
tion, the primary tidally disrupted 67 times more stars tthensec-
ondary.

4.2.2 The Velocity Distribution Moments

To characterize the shape of a LOSVD using a small num-
ber of parameters, we expand it to a series of the so called
Gauss—Hermite (GH) moments; this procedure is consistéht w
van der Marel & FranX1993. We use a function of the form:

N
1+ n;han(w)}

© 2010 RAS, MNRASD0Q, 1-18

Y a2

20 = V2no
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Figure 3. Same as Fig2 for aq= 0.1 BBH. Axes are normalized bys: (= 0.96,0.77,0.59 forx = 3,5,10). Note that despite the factor of 10 decrease in the
secondary BH mass compared to the 1 case, the loss cone in fact gets larger (see text), andisartiprogradre/retrograde asymmetry remains.

wherew = (v— p)/o is the normalized velocity parametét,(w)

is the Hermite polynomial of the degree. Note that here refers

to the dispersion of this particular line profile. We find thest
fitting y, u, o andhn (n > 3) parameters using the least-squares
method.

While the GH moments derived above are not standard mo-
ments in the statistical sense, as they are derived by $eastres
best-fitting to the data, rather than by projections on the,dhese
commonly used GH terms are useful to describe the deviafion o
the velocity profile from a Gaussian. For practical reasoasave
mostly interested in the first two deviations, as these aemnofell
measured. The corresponding polynomials are:

M = = (20 -3) (19)
Ha(x) = %(4%-1&%3)‘ (20)

The coefficient ofHz(x), hs, is @ measure of the profile’s lack of
symmetry for reflections with respect to its centroid, dnds a
measure of the even deviation from the Gaussian shape. léowev
there can be significant contributions to the profiles frogher

© 2010 RAS, MNRASDOQ, 1-18

moment and we therefore also present below plots of the lactua
LOSVDs along various positions.

4.2.3 Projected views

Figure4 presents maps of the projectgdo, hz andh, for theq=1
simulation; for an edge-on side-view (along traxis), where the
BHs are maximally separated. Each map is composed of 49
pixels in the projected plane; each pixel represents a mbooaéru-
lated from the LOSVD measured using 100 bins in velocity. SThu
the spatial resolution is- 0.4 length units. Due to the maps’ up-
down symmetry and left-right antisymmetry, and the the fhat
each is made of 10 superimposed snapshots, statisticsémnasr
40-fold. Therefore, these maps are derived from a totactéie
number of~ 3 x 10° particles.

A prominent counter rotating “torus”-like structure is séa
the top-lefty map out to a scale 5 times larger than the binary
separation. This results from the preferential stabilftyetrograde
orbits, clearly seen in the stability maps (F&y. On scales of < 2
one can see the prograde orbits of the stars trapped in theHBHs
spheres, as they move together with the BHs.
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Figure 4. Maps of velocity moments of the LOSVD for@= 1 BBH. An edge-on side-view of the BBH. The BHs are located at+1, (y,z) = (0,0).
The line of sight velocity corresponds ¥p. Note the “torus™-like structure i produced by the dominance of retrograde orbits outside thélll spheres.
The prograde motion within the Hill spheres reflects theahitonditions. There is a dip io towards the centre, in contrast to the monotonic rise ar@und
single BH. A torus and a dip are present also in the maps ofifeehmoment$i; andh,. Note that the peak values of the pixels within the Hill sgiseare

saturated.

The top-right panel in Figd shows a map of. As expected,
o increases inwards, and peaks inside the Hill spheres ofatbe t
BHs. However, there is a prominent dropdnatr < 3. This drop

everywhere, and only the maps afand h, are shown. Again, a
similar structure is seen on scales- 2 to that seen in the above
two perspectives. The small difference is the perfect ayisime-

occurs atr where all the stable orbits are purely retrograde, and are try, in contrast to the reflection symmetry in the edge-onvgie

thus moving relatively coherently around the BBH. Inside Hill
spheres, both prograde and retrograde orbits are allowddhao
jumps to the expected value for the kinematics around aesBHl.
The maps ohz andhy, on the lower left and lower right panels,
show similar structures to those seen in thandc maps.

Figure5 shows the projected kinematics for an edge-on, front-
view (BBH viewed along the binary axis). The maps are remark-
ably similar to the side-view maps on scales- 2. On smaller
scales only a single peak is seeroinas the two BHs project on the
same position. Interestingly, themap still shows a prograde struc-
ture, although the two BHs are moving tangentially to the lof
sight. This may result from the non-uniform and anisotrapital
conditions of the bound orbits within the Hill spheres, asmeed
in the local corotating frame centred on each BH.

Figure6 shows a face-on projection of the kinematics (the bi-
nary is viewed along the-axis). From symmetryy =0 andh3 =0

Figure7 presents an edge-on side-view of kinematics around
the g = 0.1 BBH. The more massive BH is on the right. The
kinematic signatures remain prominent, but the structbxeonisly
loses the reflection symmetry of tige= 1 case. Also, the maps of
hz andhs become more distinct compared to the mapg aihdo,
and not similar as they were in tlie= 1 case. The face-on view
in Figure 8 shows that the low mass companion creates adow
“trench” along its orbit, and a tiny peak within its tiny Hiphere.

A similar effect is seen in the; map.

4.2.4 Slit Views

Figure 9 presents slit views of the four velocity distribution mo-
ments. The slitis placed along theaxis; and provides a cross sec-
tion of the edge-on side-view kinematical maps. The sotiddiis
for the g = 1 case, and the dashed line for thpe- 0.1 case. The

© 2010 RAS, MNRASD00, 1-18
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Figure 5. The same as Figl, for an edge-on front-view, i.e. along theaxis, so both BHs are along the line of sight. As expecteel sthucture on scales
beyondr > 2 remains the same. The Hill spheres now overlap and thusdamare compact structure.
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Figure 6. The same as Figt, for a face-on view (along the-axis). Due to the reflection symmetry of the system with eespo thex-y plane, the LOSVD
is symmetric, and thug = hz = 0. The structure in the maps of andh, outside the Hill spheres is similar to that seen in the edgeiews, but now the
structure shows a perfect axial symmetry, in contrast taefiection symmetry in the edge-on views.
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Figure 7. An edge-on side-view of g = 0.1 BBH, as in Fig4 for g= 1. The primary BH is now at = 0.18 and the secondary at= —1.82. The structures
seen in theu ando maps are similar to those seen in the: 1 case, bué is now physically 5.5 smaller for the sarivg (Tablel). The amplitude oft in the
torus structure, is now lower, in model units, compared &xth 1 case, but this is compensated by the higher physical véline eelocity unit. The higher
GH moments display more complicated structure, but rougimylar to theq = 1 case.
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Figure 8. A face-on view of ag = 0.1 BBH, as in Fig.6 for ag = 1. The secondary BH at= —1.82 now scours a “trench” io andhg, rather than a wide
dip seen in thg = 1 case.
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Figure 9. The view through a slit of the edge-on side-view maps preskimt Figs.4, 7. The slit is placed along theaxis and extends from= —0.6 to
z=0.6. Theq= 0 result is scaled tM, = 2, so a comparison with thg= 1 can be made. Sincgv) remains isotropic for the = 0 case, bottu andh;
are 0 there. Note the higher at |x|> 3 for theq = 1 case, compared to a single BH of the same total mass. Asalrdp ino at |x|< 5, in contrast to the
g= 0 case. Large amplitude features are also sebp amdhy, in contrast to the = 0 case. Note that the horizontal and vertical axes corresmodifferent
physical scales for different values @ffor the sameéM, (see Tablel).
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Figure 10. The same as Fid, but the system is viewed here along thexis (“face-on”). The odd momentg, andhs, are not shown as they are zero due to
symmetry.
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Table 2. The properties of the four MC simulation carried obt.is the
number of orbits integrated in each run (outer and inneoregivere calcu-
lated separately, s€83.2). The number of snapshots used in the Figures of
84.2is indicated in the fourth row. The two bottom rows give thacfion

of divergent ¢ > r.) and crashingr(< rijgay) orbits. These numbers can be
converted to relative mass deficiencies (8ée.J).

main mainy ratio single
N (outer) 675x 10" 4.26x 10" 822x 10" 1.13x10
N (inner) 586x10° 6.14x10° 249x10° 148x10°
q 1 1 0.1 0
# Snapshots 10 10 10 5
Divergent .26 .26 .34 ~10°°
Crashing .013 .013 .026 .0043

top left panel present. The two sharp peaks at=+1forq=1
represent the cluster of stars trapped in the Hill spherach &H,
moving at approximately the BHs orbital velocities©0.5. Fur-
ther out, atx ~ +3, there are the broad peaks of the larger scale
counter rotating torus, as seen in Fig.At a low angular resolu-
tion, the broad counter rotating torus structure may be ethly

the compact corotating clusters. The amount of dilutionedels

on the compact clusters luminosity compared to the torutaste
luminosity, which may be different than assumed here.

Interestingly, wherg = 0.1, the two sharp peaks disappear.
The massive component, locatedxat R; ~ 0.2, now moves at
a velocity of onlyvy = q/+/2(1+q) ~ 0.067, below the torus
peak velocity. The secondary BH moves faster now, with=
1/4/2(1+q) ~ 0.67, but its Hill sphere volume is now roughly
q~3/2 ~ 30 times smaller, and its contribution to the total profile,
given the assumegd(r), is negligible.

The top right panel of Fig9 presentso along the slit. The
dotted line is for aq = 0 single BH, with a total mass scaled to
2, which shows the expected monotonic riserds r—1/2 towards
the centre. In the = 1 caseg atx > 3 islarger by 20-40% than
for the single BH case, with the same total mass. This risarscc
because of the exclusions of the low velocities within ttesloone.
Furthermore, ax < 5, o starts falling, in contrast to the sharp rise
for the g = 0 case. This results from the gradual elimination of
the prograde orbits with decreasingThis leaves only retrograde
orbits, and a quasi-coherent flow, and thus a lowefThe double
peaks at the centre are due to stars bound within each Hiéfreph
Forg = 0.1 only one peak is prominently seen, as expected, since
the volume of the secondary Hill sphere~s30 times smaller. The
radial profile ofc also shows a small excess compared to the single
BH with the same total ma%sand a drop close to the centre, but
the effects are less pronounced then forghe 1 case.

The lower left panel showlsg; along the slit. Comparable peak
values are seen in both tige= 1 andg = 0.1 cases, indicating that
the amplitude of the LOSVD asymmetry is driven by the presenc
of a second BH, and is not sensitive to its masgfferin the range
0.1-1. This can also be seen in the stability maps, which stow
ilar asymmetry forg = 1 andq = 0.1. The value ot, along the

4 the plottedq = 0 can be scaled to a total mass of 1.1, forghe0.1 case,
by multiplying the velocities by,/2/11~ 0.43, and distances by 1240~
3.

slit is shown in the lower right panel. The differences frdma sin-
gle BH case are more prominent, age- 0.1 presents the largest
effects.

Figure 10 presents the slit results for a face-on view. The ex-
cess ing, and its depression &t| < 4 is clearly apparent for the
g =1 binary, and a somewhat enhanced depression is also seen for
theq= 0.1 binary, compared with the edge-on view. Significant de-
viation of thehy profile from the single BH are now prominent for
bothq values.

4.3 Density Profile

Figureslland12present an edge-on side-view, and a face-on view
of the surface stellar densities for the- 1 andq = 0.1 cases. Both
images for the = 1 case are remarkably similar, showing the well
known “scouring” effect of the BBH which depletes stars elos
the binary. The slight difference is the perfect axial syrrgef
the core structure in the face-on view versus the somewbat el
gated core structure in vertical direction in the edge-awviln
theq = 0.1 case the edge-on side-view shows that the secondary
BH carves out a low density torus structure along its orlsuad
the primary, producing a circular structure extended invémgical
direction, for the innermost stellar light distributioroand the pri-
mary BH. The face-on view shows an axially symmetric strrectu
with a tiny density enhancement from stars bound to the dilese
of the secondary BH.

Figure13shows the radial density profifg(r) averaged along
spherical shells. The MC initial condition js(r) 0 r=2 out to
r = Rmax = 60, as noted by the red line in the figure. In the: 0
simulation the slope remains close +@ in the inner parts. The
slight steepening of the slope towar@gax, and the much steeper
slope beyondRmax, are edge effects which come from the fact that
particles on radial orbits from the initial< 60 sphere move out to
60<T <Tro.

For the BBH cases, the slope flattens inwards towards the core
as the fraction of unstable orbits increases with decrgasim the
g =1 case, a dip forms far < 5, with a minimum at ~ 2. The
rise inward atr < 2 is produced by stars bound within the Hill
spheres of the two BHs. In tlee= 0.1 case the dip is shallower, as
the averaging over spherical shells dilutes the densitp droich
occurs only in the region close to the secondary BH. Therdiffee
between the initial and final density distributions is a nuiea®f the
stars lost from the system as a functionrpés noted ir§4.2.1 It
is important to note that although our initial condition reasore
radiush =1, the final state core radius+s10, as shown in FidlL3,
which is closer to the observed core radii in core ellipgcal

4.4 Internal Kinematics

Figure 14, upper panel, shows the mean tangential component of
the velocity,Vyp, as a function of. At r > 10 both prograde and
retrograde orbits are similarly stable, and thysapproaches zero.
At r < 10 retrograde orbits become significantly more stable than
prograde (Fig2), leading to a sharp rise M,. Forq = 1,V rises
from ~ 10% of the circular velocity at = 8, to ~ 50% atr = 4

to ~ 100% atr = 2, where only retrograde orbits survive. The
solid red line is the circular velocity, for comparison; iasvcal-
culated assuming a BH mass of 2 in the centre, as imthel
case. Fog = 0.1, the asymmetry between retro- and prograde or-
bits remains significant, as can be seen in Bjdut averaging over
spherical shells dilutes the effect of the secondary BH,tdube

© 2010 RAS, MNRASDOQ, 1-18
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Figure 11. The projected density for the = 1 simulation. The left panel is an edge-on side-view, andritiiet panel is a face-on view. Both images are
remarkably similar, showing the well known “scouring” efteelated to the BBH formation. The slight differences is flerfect axial symmetry in the face-on
view, and the somewhat elongated core structure in vericattion in the edge-on view. Colour represents ldgarithm of the normalizeddensity. The

values in the inner regions are saturated.
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Figure 12. The same as Fid.1, for aq = 0.1 BBH. The secondary BH carves out a low density torus stracilong its orbit around the primary, producing
a circular structure extended in the vertical directiontf@ innermost stellar light distribution around the prign&H. The face-on view shows an axially
symmetric structure with a tiny density enhancement fraamssbound to the Hill sphere of the secondary BH.

non-axisymmetric morphology of the velocity field in thisseaas
evident in Fig.7.

The middle panel of Figl4 shows the 3D velocity dispersion
0’ = [(0?+02+03)/3*/2 (not to be confused with the 1D veloc-
ity dispersion,o). The flattening and drop at< 3 results, as noted
above, from the disappearance of prograde orbits, whiaiisléa
a more coherent flow with only retrograde orbits, and thusieto
dispersion. The red line indicates for theq = 0 simulation, for a
single BH with a mass of 2. The excess of the BBHdDhoted in
the slit view, can also be seen here for the@D

The bottom panel of Figl4 shows the anisotropy parameter,
B =1-o¢/af, whered: = (05 + 03)%? is the tangential veloc-
ity dispersion, and; is the radial velocity dispersion. The velocity
field is significantly anisotropic already Bfayx, as orbits within the
loss cone are excluded, leadingdio> o; throughout the shown
range. As the loss cone grows inwards, the velocities beeonare

© 2010 RAS, MNRASDOQ, 1-18

tangential, and thug8 becomes more negative. Ak 3 only retro-
grade orbits remain and the tangential orbits become mdrereo
ent, which reducest and increaseg inwards.

The anisotropy derived here is about an order of magnitude
larger in absolute value than Milosavljevic & Merritt (2001) (see
their figure 16). We suspect that this issue results fromahbethat
the BBH in that work does not stall @, but rather still shrinks
rapidly at this radius (as indicated by figure 1 there). Te#atdis-
tribution there cannot reach a near steady state solutioder@ved
here. We verified that a shorter integration time in our satiah
indeed yields g8 which is smaller by factor of few. Thus, the stel-
lar kinematics derived iMilosavljevic & Merritt (2001) does not
capture the full level of the kinematic signature of a BBH @his
stalled atay,.

The dotted line model, shown in all panels, presents a madifie
g =1 model with a uniform velocity distribution extendingugsg
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Figure 13. The radial stellar density distributions for differegtvalues.
n(r) is the normalized number of particles per unit volume. Thkliree is
the initial O r 2 distribution in ther = 1-60 range. In the = 0 case the
distribution remains nearly unchanged, apart from an sidantor > 60

by stars on nearly radial orbits. Tlee= 1 model shows the flattening of
p(r) atr <5, and the deep minimum at= 2, just outside the Hill spheres
of both BHs. In theg = 0.1 case the dip is significantly reduced, partly due
to the averaging over spherical shells of a stronger dip eedfonly close

to the secondary BH orbit (see FitR).

or effectively a Maxwell-Boltzmann distribution with — c. The
remarkable similarity to the standagd= 1 model, wherer = 0.25

(Table 1), for the three internal kinematics parameters, shows that

the BBH kinematic signature is nearly independent of thenfof
f(v) used for the initial conditions.

45 LOSVDs

Figure 15 shows the LOSVD along certain lines of sight. Each
panel shows the LOSVD along three lines of sight at distanfes
3, 5, and 10 from the centre of gravity (origin of the coordé&sd.
The size of the aperture corresponds to a projection pixegraa
of 0.4 x 0.4 square length units. The top panels are forghe 1
case, and the bottom panels aredet 0.1. The left panels are for
an edge-on side-view of the binary and the right panels ara fo
face-on view. The vertical axis is in units of orbits per \@ty bin,
where each line has 100 velocity bins; the range of velacisele-
termined according to the maximal escape velocity along éae
of sight, the same values used in the stability maps (Rigad3).

The line FWHM changes by 10% moving inward from
x =10 tox =5, for theq = 1 model, and it drops moving further
inwards tox = 3, as also seen in the slit views of (Figs. 9, 10).
This is in sharp contrast to the single BH case, where the FWHM
is expected to rise by 83%(,/10/3) fromx = 10 tox = 3. Note
also the line asymmetry in the edge-on view, which increasas
ing inwards, reflecting the enhanced retrograde motioredioshe
centre. In thegq = 0.1 case the presented lines of sight are away
from the secondary BH, at= —1.82, somewhat reducing the pro-
file asymmetry. The FWHM of the lines increases fram 10 to
x =5, as expected for a single BH, but it remains constant from
x=5tox =3 (as seen in Fig®, 10), in contrast to the expected
30% rise for a single BH. A noticeable asymmetry near the line
base is seen for the edge-on view, similar to the asymmegny ise
theq =1 case, but with a lower amplitude.

Figure 14. The radial dependence of the three internal kinematicsypara
ters. The top panel is the mean tangential velocity: At10 the preference
for retrograde orbits becomes significant, leading to tee iV, reach-
ing a pure circular velocityw) atr < 3, as only retrograde orbits remain.
The middle panel presents the 3D rms velocity dispersionaifer the
g= 1 model matches the= 0 case (wher®, = 2), but at smaller there

is a 20-30% excess (see also Fiy.produced by the BBH modification
of f(v). The bottom panel is the anisotropy paramedeTheq = 1 and

g = 0.1 models show the velocities become tangential close to ¢e c
tre, in sharp contrast tq = 0, wheref(v) remains nearly isotropic at all
r. The model u.v., shown in all panels, presents a modified1 model
with a uniform velocity distribution extending t@s.(effectively Maxwell—
Boltzmann witho — ). The remarkable similarity to the standage= 1
model whereo = 0.25 (Tablel), for all three parameters, shows that the
BBH kinematic signature is nearly independent of the fornfi(@f used for
the initial conditions.

The LOSVDs forv,, seen for the face-on view, are symmetric,
as expected due to the reflection symmetry of the system with r
spect to the-y plane. In contrast, the edge-approfiles are asym-
metric due to the prograde/retrograde asymmetry disclasek.
The asymmetry increases for lines of sights closer to théreen
and towards the wings in each profile, as these are produced by
bits closer to the binary, where the tangential velocitynasyetry
becomes larger.

Figure 16 shows the LOSVDs expected from a low angular
resolution observation for an edge-on line of sight. We caraphe
velocity profiles for two lines of sight situated on opposides of
the centre, at distances of 5 and 10 from the centre. We atiedr
the LOSVD through a circular aperture using a Gaussian with a
FWHM of 10 as the weight function, which represents the aagul
point spread function (PSF) of the telescope. The left panfar
g =1 and the right foig = 0.1. Theq = 1 case shows a clear shift
in the peaks of the LOSVDs, which results from the net rotatib
the stars, clearly seen in the spatially resolved maps odtkeage
velocity u (Figs. 4, 7). The shift is more prominent for the lines
of sights centred ax = £10, i.e. at a position a FWHM of the
PSF away from the centre. In tlge= 0.1 case the PSF used here
eliminates almost completely the profile differences betwée
two lines of sight, and the binary kinematic signature isnamnall.
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5 DISCUSSION

The extensive scattering experiments presented abovey usi0?
test particles surrounding a massive BBH embedded in a ipdge
tential, allowed us to accurately map the 3D velocity disttion
of stable orbits. These are used to derive maps of the penje&xd
velocity distribution moments, and of the LOSVD along vaso
directions. The stable orbits close to the binary are géigemn-
gential and preferentially retrograde, leading to retadgr “torus”
structure in the projected average velocity. The velocigpersion

important on the scales ofa ~ a few, when the binary becomes
hard and stalls.

We also explored the effects of the uniform density core ra-
diush (equationl2), and produced stability maps for= 3 instead
of h =1, for the sames. The maps look nearly indistinguishable
from those shown i84.1 This is expected as increasihgeduces
the bulge mass, which is already very small lioe 1 close to the
BBH (equation13). So, the BBH signature is independent of the
exact form of the inner bulge potential, as expected sincard h
binary resides afy, < GM, /402, where the bulge mass is neg-

shows an excess of 20-40% compared to a single BH of the samejjgipie However, in a flat core the integrated line of sigteliar

total mass, and shows a dip close to the binary. These eféaxi$o

a clear kinematic signature of the BBH, which can be detected
scales of 5-18 Thus, they can be spatially resolved even when the
binary cannot be resolved, as expected even in the neatasieza
(Yu 2002.

Interestingly, the maps of the 2D velocity distribution mo-
ments for both theg = 1 and theq = 0.1 cases, show that the
kinematic signature extends on similar scales (in units/af and
with similar amplitudes (in absolute velocity). One coulgect a
smaller effect if the companion BH is of smaller mass, butaapp
ently the stability of orbits is strongly influenced by a sedary
with just 10% of the primary’s mass. However, the stallindiva
is a factor of(1+ q)/2q = 5.5 smaller in the latter case, and will
thus be harder to spatially resolve.

The tendency for counter rotating orbits and a veloc-
ity dispersion drop close to the centre were briefly noted by
Milosavljevic & Merritt (2001). However, their results were based
on N-body simulations of~ 10° particles, carried out on scales
~ 100 larger than here, required to simulate the merger ofvibe t
bulges. As a result, there were onrlyL0® particles in their study on
therj, scale (see their table 2). The implied large statisticalrsrr
in that study, therefore did not allow to probe the stellaeknatics
on the scale ofj,s and closer to the BBH probed here. The maps
of the projected kinematics produced Mjlosavljevic & Merritt
(2001) therefore do not show the BBH signature presented here.

We also find a clear drop in the projected stellar surface den-
sity, as stars are efficiently ejected from regions justidatshe
Hill spheres of both BHs (fog = 1), or of the secondary BH (for
g=0.1). This is a well known effect (e.@ier & Biermann 2001,
and therefore we do not discuss it further here.

The advantage of amN-body simulation is that it allows
to follow the system, starting with plausible initial cotidns
of separate bulges, and derive the resulting stellar vglatis-
tributions on large scales following the merger. For exampl
Milosavljevic & Merritt (2001) found that stars in the merged bulge
have a net rotation in parallel to the initial angular moremt
of the two bulges. In the scattering experiments, we jusirassl
some initial conditions for the stellar distribution, anol mbt know
whether these were plausible. However, since our simulstare
much faster thamN-body, we can explore the dependence of the
results on the initial conditions. The initial stellafv) used in the
MC simulation is drawn from the bulge, and as shown in Figg,
and in particulaB, o can become a small fraction afscat small
r. To explore the dependence of the BBH signature on the linitia
o chosen forf (v), we repeated the analysis with the extreme as-
sumptiong — o, i.e. a uniformf (v) extending tovese As shown
in Fig. 14, this uniform initial f (v) produced nearly identical re-
sults. The uniformf (v) also led to small deviations((10%) in the
slit view results, indicating that the BBH signature is ipdadent
of the form of the initialf (v). Thus, the merger history of the bi-
nary, which may sef (v) on larger scales of the bulge, is likely not
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light increases outwards, increasing the dilution of the-Bfne-
matic signature by the extended stellar light. The finalestatre
radius derived here dfl ~ 10 (Fig.13) is significantly larger than
the initial condition ofh = 1, but is clearly too small in some core
ellipticals, where the BBH kinematic signature will be hardo
detect.

Furthermore, as shown in Fit, a large fraction of the unsta-
ble orbits are lost on a time-scaletof: 10°, or < 80 BBH periods,
which corresponds to a few orbital times for orbits startng ~
5-10. Thus, the BBH kinematic signature is largely impiingd-
ready on a time-scale 10° yr. Unstable orbits present in the initial
f(v) are quickly excluded. The uniqueness of the BBH signature
depends on the population of the velocity phase space ofestab
orbits. Since the stable orbits around a BBH are quasi-gieria
given orbit likely moves around in velocity phase space, smé
population of stars which populate only a small peculianeorof
the stable region in velocity phase space appears unlikee/BBH
signature is therefore likely well defined.

The unstable orbits are essentially orbits within the lassec
(or “loss cylinder”, as mentioned above), which acquires aam
complicated shape wheriais a few. The kinematics we described
may be more accurately termed “kinematic signature of los®c
depletion”. The loss cone refilling mechanisms will tend tase
the signature presented above. These mechanisms tendoimédec
more effective on larger, in particular atr > ri,g, where either
steady state, or time dependent perturbations to the spligri
symmetric potential assumed here are more likely to be foomni
occur transiently. On the scale oK 10 probed here, such mecha-
nisms are less likely to occur. If they occur transientlgytare less
likely to have a significant effect, given the shorter suavivme of
unstable orbits on these scales.

The enhancement of the observedvithin the BBH i, by
20-40% implies that the standard direct estimat®gfwhich as-
sumes an isotropic (v), will lead to an overestimate dfl, by a
factor of 1.5-2.

Once the BHSs coalesced, the signature will be lost on a time-
scale ofM*/M*, whereM, is the loss cone refilling rate arM,. is
the stellar mass at< 10. This will likely occur on a time-scale sig-
nificantly longer than the dynamical time-scale;af, and may in
fact be longer than the Hubble time, if it occurs in the low sign
core of a giant elliptical galaxy. However, if the BBH acasra sig-
nificant kick following the merger, it may oscillate arourgtcore
(Gualandris & Merritt 2008 which will erase the BBH kinematic
signature on a much shorter time-scale, possibly while rrihg
the core due to heating of the stars. The detection of thaqieed
BBH kinematic signature implies the presence of a BBH culyen
or a merger which took place on time-scales shorter thandde |
cone refilling time, although this timescale may be the Halbiphe
in giant ellipticals.

The calculations presented above follow test particles, an
thus do not take into account the energy and angular momentum
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Figure 15. The LOSVDs at different positions. The viewing angle andriael are noted in each panel. Each panel shows three lir@ghdf(along the
y-axis) atz= 0 andx = 3,5,10. The error bars are statistical errors. The solid lineste GH best-fits up to order 20. Note that the line FWHM charipe

~ 10% moving inward fromx = 10 tox = 5, for theq = 1 case, andropsmoving inwards tox = 3, in sharp contrast to expected rise for the single BH case.
In theq = 0.1 case the FWHM increases fraxm= 10 tox = 5, but remains constant from= 5 tox = 3, in contrast to the expected rise for a single BH. A
noticeable asymmetry near the line base is seen for dpotiiues. The lines are symmetric in the face-on views, and/smilar trends in the FWHM vs.

distance from the centre, as seen in the edge-on, side-view.

lost from the BBH due to the stellar ejection, which can beifig
cant given the large fraction of ejected stellar mass§ge2 1). The
justification is that the purpose of this work is to look foe tsteady
state solution, i.e. find which orbits may be populated anéckvh
cannot survive for long, when the BBH is at the stalling radiu
rather than follow the time evolution of the system. The iiexpl
significant energy loss of the BBH found here, results fromith
appropriate initial conditions of a spherically symmetpic¢] r—2
assumed here for a hard BBH. In reality, stars may be ejeobed f
the system much earlier when the binary just becomes bowend, i
whena ~ rinq, Or potentially even earlier and on larger scales, based
on the high value oMget/M. ~ 10, and the small scatter, found by
Kormendy & Bendel(2009 for massive ellipticals.

Here we find that the kinematic signature of the BBH is im-
printed on the same scale< 10) that the surface density signature
of the BBH is imprinted (inevitable as stars with specificedimat-
ics are lost). Therefore, gt is indeed a signature of the BBH
formation process, then the BBH kinematic sighature maynipe i
printed already on the significantly larger scales of the cadius,

whereMgetis measured, of the order of tens to hundreds of parsecs
(Faber et al. 1997/Kormendy et al. 2009 and may be more easily
detectable, possibly already in existing data. Clearlig ibterest-

ing to explore the BBH merger starting from, and follow the
resulting kinematic signature on larger scales than thakeilated

in this study.

The calculations presented here assume circular BH orbits.
The BBH may have a high eccentricity due to various mechanism
(e.g. Makino et al. 1993 Mayer et al. 2007 Sesana et al. 2007
Berentzen et al. 20Q9In that case the effects calculated here will
likely extend to larger scales, set by the major axis of theatyi
orbit. It is less clear if the binary stalls in such a case, anahat
radius, if it does.

It is also interesting to note that stars bound within thd Hil
spheres preserve the original populations before the mege
curred, as stars outside the Hill sphere with a total enesdgvb
the Hill sphere potential barrier (measured in the corotptiame,
where the energy of each orbit is conserved) cannot entandt,
stars with a total energy above the potential barrier in thié H

© 2010 RAS, MNRASD0Q, 1-18
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Figure 16. The LOSVDs for an edge-on view with a low angular resolutitrservation. The LOSVDs are integrated through a circulartape with a
Gaussian weight function with a FWHM of 10, representing mgudar resolution five times worse than the binary separafitie left panel is fog = 1 and
the right forq= 0.1. The lines of site are centredxat +10 andx = 45, i.e. on both sides of the BBH. There is a clear shift in the fpeaks in thg = 1 case
between the two sides, resulting from the rotation strecawident in the side-view maps (see Fyy. The shift is significantly smaller in the= 0.1 case.

sphere, are on highly unstable orbits and disappear qufciy
the system. Stars can enter or leave the Hill spheres ordyighr
an energy exchange with a fourth body, which may be very stow i
low density cores.

6 CONCLUSIONS

Orbits in the restricted three body problem are notoriousiyplex
(though some insight can be gained from stability maps)ehlex
exploit this property to derive the signature of a BBH on thanby
stellar kinematics, once unstable orbits are gone. Theidraof
velocity phase space populated by stable orbits decreasesds.
The stars ejected by unstable orbits will leave behind & fifgfi-
ciency, which was suggested to explain the core structureast
sive ellipticals. The remaining stars are on significantlisatropic
orbits, characterized by the following properties:

(i) Tangential orbits dominate, mostly retrograde at 5.

(ii) Increasedo, due to the elimination of low tangential veloc-
ity orbits.

(iii) Adropin o atr <5, as most orbits become retrograde.

These properties lead to a specific signature on the LOSVD mo-

ments on scales as large as 5axl,Owhich may be resolved in
nearby galaxies. The detection of these kinematic featusgsin-
dicate the presence of a BBH currently, or a relaxation tige a
beyond which the kinematic signature is erased. If the coues

ture is a signature of a BBH phase in the past, some BBH kiriemat

signature may remain on the core scale as well.
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