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ABSTRACT
The stalling radius of a merging massive binary black hole (BBH) is expected to be below
0.′′1 even in nearby galaxies (Yu 2002), and thus BBHs are not expected to be spatially re-
solved in the near future. However, as we show below, a BBH maybe detectable through the
significantly anisotropic stellar velocity distribution it produces on scales 5–10 times larger
than the binary separation. We calculate the velocity distribution of stable orbits near a BBH
by solving the restricted three body problem for a BBH embedded in a bulge potential. We
present high resolution maps of the projected velocity distribution moments, based on snap-
shots of∼ 108 stable orbits. The kinematic signature of a BBH in the average velocity maps
is a counter rotating torus of stars outside the BBH Hill spheres. The velocity dispersion maps
reveal a dip in the inner region, and an excess of 20–40% further out, compared to a single BH
of the same total mass. More pronounced signatures are seen in the third and fourth Gauss–
Hermite velocity moments maps. The detection of these signatures may indicate the presence
of a BBH currently, or at some earlier time, which depends on the rate of velocity phase space
mixing following the BBH merger.

Key words: black hole physics – galaxies : nuclei – stellar dynamics.

1 INTRODUCTION

The discovery that most galaxies harbour a massive black hole
(BH) at their core (Magorrian et al. 1998), and the commonly ac-
cepted interpretation of cosmological structure formation simula-
tions, that galaxies grow by mergers (e.g.Kauffmann et al. 1993,
cf. Dekel & Birnboim 2006that growth is mostly by gas accre-
tion) implies that massive binary black holes should commonly
form at the core of galaxies (Volonteri et al. 2003). Unlike the pre-
vious view, that the formation of such a binary results from the
rare process of merging during the life of the rare objects, quasars
(Begelman, Blandford & Rees 1980). Dynamical friction on the
background stars leads to inspiral of the binary on a dynamical
time-scale, until the binary becomes hard, which occurs at abinary
separation close to

ah ≡ q
1+q

GM•
4σ2 , (1)

whereG is the gravitational constant,M• is the mass of the pri-
mary BH,q is the mass ratio of the BHs (q6 1), andσ is the bulge
1D velocity dispersion. The inspiral rate slows drastically when
a. ah (e.g.Merritt 2006a), and further inspiral is set by the rate at
which stars diffuse in phase space into the loss cone (Frank & Rees
1976)1. The minimum phase space diffusion rate is set by the two

⋆ E-mail: ym@physics.technion.ac.il(YM);
laor@physics.technion.ac.il(AL)
1 More properly termed the loss cylinder, as pointed out by
Cohn & Kulsrud(1978). See also§4.1below.

body relaxation rate. This mechanism may be fast enough in the
lowest luminosity bulges, where the stellar cores are the densest,
and may lead to merger through gravitational wave emission in less
than the Hubble time (but see recent suggestions that the core den-
sity in the Milky Way is smaller than originally thought,Merritt
2010and references therein) . In more luminous bulges, the binary
inspiral is expected to stall (e.g.Makino & Funato 2004; Merritt
2006b, and references therein), leading to the final parsec prob-
lem (Begelman et al. 1980). The largest plausible stalling radius in
the nearest galaxies is just below 0.′′1 (Yu 2002), and is thus gen-
erally unresolved. The stalling may be overcome by diffusion of
orbits into the loss cone induced by tangential forces. Either due to
bulge triaxiality or bar like structure, or by massive perturbers in
the form of molecular clouds or a third BH due to another merger
(e.g. Merritt & Poon 2004; Berczik et al. 2006; Hoffman & Loeb
2007; Alexander 2007; Perets & Alexander 2008). Alternatively,
inspiral may be induced by angular momentum loss of the BBH
to circumbinary gas (e.g.Armitage & Natarajan 2005; Mayer et al.
2007; Cuadra et al. 2009). These processes may lead to a merger
on time-scales well below the Hubble time.

The formation process of the BBH ejects stars from the bulge.
This occurs on scales significantly larger thanah, and it flattens
the stellar density profile. This BBH “scouring” may be respon-
sible for the formation of the core present in luminous ellipticals
(Milosavljević & Merritt 2001; Merritt & Milosavljević 2005). Re-
cent high quality observations byKormendy & Bender(2009) indi-
cate a remarkably tight correlation between the deduced mass defi-
ciency in the core region, and the black hole mass. This correlation
is likely a signature of the cumulative scouring effects of merging
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BHs during the BH growth. Are there any other signatures induced
by the merger?

If the binary stalls, then a significant fraction of galaxiesmay
harbour a compact BBH (e.g.Volonteri et al. 2003), which cannot
currently be directly resolved (Yu 2002). The binary affects the
stability of stellar orbits on scales up to several times larger than
the binary separation. The presence of a binary may thus be in-
ferred through its signature on the background stellar distribution
and kinematics (e.g.Cappellari & McDermid 2005; Kandrup et al.
2003). The purpose of this paper is to determine this signature and
provide a tool which can be used to detect the effect of a binary
black hole on scales 5–10 times larger thanah, a scale which may
be resolved in nearby galaxies with current angular resolutions.

We first explore the stability of orbits near a BBH by calcu-
lating stability maps. These maps present the time it takes for a
test particle to become unbound, as a function of its position in
velocity space, at a given launching radius. A similar concept ap-
pears inWiegert & Holman(1997) in the context of small bodies
near a binary stellar system, but the coordinates used therewere the
semi-major axis and the inclination of the orbit, which are less rel-
evant for the kinematic signature explored here. The stability maps
elucidate how the velocity phase space populated by stable orbits
evolves with integration time, and how it varies with distance from
the binary. The maps shows how the velocity distribution function
f (v) evolves from a smooth isotropic function at a distancer ≫ ah,
to a highly anisotropic function, which produces the BBH kine-
matic signature.

We derive the BBH kinematic signature by integrating orbits
of test particles around a massive BBH, i.e. by solving the restricted
3-body problem, for a binary in a circular orbit, embedded ina
bulge potential. We take snapshots of the system once it approaches
a steady state, and produce maps of the projected distribution of the
stars and their velocity distributions. Similar scattering experiments
were already done in the past (e.g.Hills 1983; Mikkola & Valtonen
1992; Quinlan 1996; Sesana et al. 2007). The purpose of these stud-
ies was to derive the effect of the stellar background on the BBH
merger rate, while our purpose is the reverse, to derive the effects
of the BBH on the background stellar population. The latter calcu-
lations were already carried out byMilosavljević & Merritt (2001)
based onN-body simulations. These simulations were limited to
N . 105 and cover a region more than 103 larger thanah, thus
they do not allow accurate mapping of the projected line of sight
velocity distributions (LOSVDs) on scales of a few timesah, as
done here. Since the background stellar mass withinah is neg-
ligible (see below), and 2-body scattering cross sections are still
small,N-body simulations can be replaced by the much faster scat-
tering experiments. These experiments allow us to probe thestellar
kinematics with a roughly 105 higher resolution, in the relevant re-
gion, compared toMilosavljević & Merritt (2001). In §3we present
the method of the calculation, and in§4 we present results on the
phase space stability regions, maps of the projected velocity distri-
bution moments, velocity moments along some slit positions, vari-
ous LOSVDs, and also stellar density profiles and projected density
maps. The results are discussed in§5, and summarized in§6.

2 MODEL

2.1 Orbital Elements

The two BHs are assumed to be in circular orbits in thex-y plane,
about their centre of mass at(x,y) = (0,0). The orbital period, the

relative velocities, and radii are:

T = 2π

√

a3

GM•(1+q)
(2)

V =

√

(1+q)
GM•

a
(3)

R1 =

(

q
1+q

)

a (4)

R2 =

(

1
1+q

)

a (5)

wherea is the binary separation, corresponding to the stalling ra-
dius. We takea = ah, i.e. the stalling separation is the hard bi-
nary separation (defined in equation1). The recent simulations
of Merritt (2006a) (table 1 there) indicate that the stalling radius
agrees withah to typically 20%. Combining equations (1) and (3)
gives:

V
σ

=
2(1+q)√

q
(6)

The physical scales are set by specifying two parameters,
say M• andV. However, sinceM• and σ are correlated through
theM-σ relation (Gebhardt et al. 2000; Ferrarese & Merritt 2000;
Tremaine et al. 2002, and citations thereafter), only one parameter
is required. We use the recentGültekin et al.(2009) relation:

logM8 = 0.12±0.08+(4.24±0.41) log σ200 (7)

whereM8 = M•/108 M⊙ andσ200= σ/200 km s−1, which gives:

ah = (3.1±0.3)
q

1+q
M0.53±0.05

8 pc (8)

= (3.5±0.3)
q

1+q
σ2.24±0.41

200 pc. (9)

Thus, the binary separation is expected to be on the parsec scale.
Similarly, the orbital period is:

T = (5.5±0.3)×104 q1.5

(1+q)2
M0.29±0.03

8 yr (10)

= (5.0±0.3)×104 q1.5

(1+q)2
σ1.24±0.1

200 yr. (11)

Thus, a characteristic orbital time-scale of 104 years, with a rela-
tively weak dependence on mass.

2.2 Model Units

For the sake of simplicity, we use the following valuesG = 1,
M• = 1, anda = 2. To convert back to physical units, one needs
to specify the physical value ofM•; and then the length, which is
measured in units ofah/2, is given in parsecs by equation (8). Time
is then measured in units of(a3

h/8GM•)1/2 and velocity in units of
(2GM•/ah)

1/2. Alternatively, the conversion from dimensionless
to physical units can also be made using the value ofσ200.

Note that models with differentq correspond to different phys-
ical scales for the same mass scaling (see equation1). Table1 gives
the physical scales of the model units forM• = 108 M⊙, andq= 1
and 0.1 used below. Also note thatσ in model units is a function of
q only (equation6).

c© 2010 RAS, MNRAS000, 1–18



The Stellar Kinematic Signature of Massive Black Hole Binaries 3

Table 1. The orbital elements in model units and physical units. The con-
version is forM• = 108 M⊙, and the conversion factors are listed in the
lower part of the table.

q= 1 q= 0.1
Expression Model Physical Model Physical

a 2 2 1.55 pc 2 0.28 pc

T 4π
√

2
1+q 12.57 12 783 yr 16.94 1 336 yr

V
√

1+q
2 1 745 km/s 0.74 1 296 km/s

σ
√

q
8(1+q) 0.25 186 km/s 0.11 186 km/s

Length 1 0.78 pc 1 0.14 pc
Time 1 1017 yr 1 79 yr

Velocity 1 745 km/s 1 1 747 km/s

2.3 Bulge Properties

The BBH is embedded in an isothermal sphere, i.e. the veloc-
ity distribution of the stars is a Maxwell–Boltzmann distribution
f (v) = Av2exp−v2/2σ2

, wherev is the magnitude of the velocity,
A is a normalization coefficient. The assumed stellar densitypro-
file is ρ(r) = σ2/2πGr2, the self-consistent solution for a singular
isothermal sphere. This is only an approximate solution fora finite
mass bulge, and is not appropriate within the BH sphere of influ-
ence. Here we usef (v) and ρ(r) as convenient initial conditions
for the stellar distribution close to the BBH. Also,ρ(r) allows a
convenient representation of the bulge potential, and is surprisingly
accurate for the average properties of massive (> 3×1010 L⊙) el-
lipticals, within their effective radius (Koopmans et al. 2009). To
avoid the non physical divergence ofρ(r) at r = 0, we assume a
core structure:

ρ(r) =







ρ0 r < h

ρ0

(

h
r

)2
r > h

(12)

whereh is an arbitrary break radius and

ρ0 =
σ2

2πGh2 .

The integrated bulge mass derived from the above density field is:

M(r) =

{

2σ2

3Gh2 r3 r < h
2σ2

3G (3r −2h) r > h
(13)

The expression for the gravitational potential (i.e. the bulge poten-
tial) is:

Φbulge(r) =

{ σ2

3Gh2 r2 r < h
σ2

G

[

4h
3r +2ln

( r
h

)

−1
]

r > h
(14)

The N-body merger simulations ofMilosavljević & Merritt
(2001) indicate that at the time the binary becomes hard, for a short
while, anr−2 density profile extends down to the scale ofah

2. We
therefore assumeh= a/2 (in model units,h= 1, but note the final
larger core radius produced at the end of the simulation). From here
on, we work only in model units (defined in§2.2).

The calculations of the binary orbital elements (equations2–5)

2 Though this is not necessarily a realistic result, given thesmall number
of 103 stars interacting with the BH in their simulation withinr infl , and the
implied very short relaxation time.

ignores the bulge mass within the BBH orbits. The enclosed mass
within the radius of the secondary BH (equation5), which resides
outside the uniform density core, is:

M(R2) =
q(2−q)

6(1+q)2
. (15)

Thus, M(R2) . 0.04M•, and the bulge mass was therefore ne-
glected in the derivation ofV andT made above.

The bulge mass grows linearly withr, and becomes larger than
the combined BH mass at:

r infl =
26
3

+
4
q
+4q. (16)

This definition of the radius of influence differs somewhat from
the commonly used definition ofGM•/σ2, or 8/q+8 in the model
units. Forq= 1, r infl ≈ 17 and forq= 0.1, r infl ≈ 49; but note that
in physical units the latter number is smaller (see Table1). The
apparent divergence ofr infl for q→ 0 results from the divergence
of V as ah → 0 (equations1, 3). Below we also simulate orbits
around a single BH, for the purpose of comparison. This simulation
is designated as theq = 0 case, but we do not use theV based
normalization, due to its divergence.

3 METHODS

3.1 Orbit Integration

The orbit of each test particle (representing a star) is solved using a
5th order Runge–Kutta method with adaptive step size control. The
fractional error tolerance in the code was set to 10−6, further lower-
ing this value had no detectable effect on the results. The accuracy
of the calculation was also verified through conservation tests of
the value of the Jacobi integral, a constant of motion in the circular
restricted 3-body problem.

The integration for each particle was terminated if it reached
r∞ = 200. Integrating to higher values ofr∞, up to ∼ 3× 103,
yielded negligible effects on the results presented below.An up-
per limit on the physical distance of the order of< 103 pc is also
expected as tangential forces produced by various deviations from
the pure spherical symmetry, assumed here, become more likely
and more effective in changing the particle’s angular momentum.
when moving far away from the centre.

The integration was also terminated if the particle reached
rtidal = 10−3 from either BHs. This represents the tidal disruption
of the star by the BH (the orbit is than termed as “crashed”). The
true tidal disruption radius isr∗(2MBH/m∗)1/3, wherer∗ is the ra-
dius of the star, which is about two orders of magnitude smaller
than assumed here. However, settingrtidal = 10−3 was enough to
set a negligible rate of stellar depletion compared to the rate of es-
cape from the system (reachingr∞), and thus led to a negligible
effects on the results. Reducing furtherrtidal was also expensive in
computing time, and was therefore avoided.

The integration was usually stopped att = 104, which cor-
responds to∼ 800 revolutions for aq = 1 binary, or a physical
time-scale of∼ 107 years. Orbits that have neither diverged (es-
caped) nor crashed before the end of their integration were defined
as “stable”. We also investigated the effects of extending the orbital
stability to t = 106, i.e. extending to 109 years. As we show be-
low, most unstable orbits diverge on a few orbital time-scales, and
a steeply decreasing fraction of the phase space volume is popu-
lated by unstable orbits with increasing time-scale.

c© 2010 RAS, MNRAS000, 1–18
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3.2 Simulations

To better understand the effects of a BBH on the LOSVDs, we first
explore the evolution with time of the regions in velocity phase
space populated by stable orbits, as a function of distance from the
BBH. For this purpose we usestability maps(see§4.1). In these
maps, a fixed spatial position is chosen as the particle’s starting
point, and a 2D grid of initial velocity vectors in a certain plane
is created. Each grid point is integrated up tot = 104, or t = 106,
and if the integration is terminated earlier, the grid pointis tagged
according to the time it took for the orbit to terminate (reach R∞
or rtidal). The stability maps are also useful for understanding the
effects of various parameters (e.g. the bulge potential) onthe or-
bit stability, and are also a tool for the code development (locate
inaccuracies and bugs throughout parameter space).

The stability maps do not produce directly observable results.
For this purpose we performed 3D Monte Carlo (MC) simulations
to derive the observable kinematic signature. The initial positions
of the particles in these simulations were drawn randomly from a
ρ(r) ∝ r−2 distribution up tormax= 60. It was verified that parti-
cles which were initiated atrmax> 60 (using a shell 60< r < 80)
made a negligible change in the results. The decreasing effect of
outer regions is expected since the line of sight integration of the
r−2 stellar distribution scales asr−1. For the sake of simplicity we
did not introduce a flat core atr < h = 1 to the initial MC r−2

distribution, as ther < 1 region is only relevant for the spatially
unresolved stellar population within the Hill sphere of each BH.

In velocity space, initial distributions in each directionwere
drawn from a normal distribution with varianceσ2, or equivalently
a Maxwell–Boltzmannf (v), as noted in§2.3. A position dependent
cutoff was applied so that|v| < vesc, wherevesc is the velocity re-
quired to reachr∞ from a given point in space (therefore, the initial
f (v) varies slightly with position). This cut is only for the sakeof
convenience, as all orbits with|v| > vesc are found to be unstable
(see the stability maps in§4.1).

Orbits residing within the Hill spheres of the two BHs, with a
total energy below the minimal potential energy at the Lagrangian
points (as measured in the corotating system), cannot escape. All
these orbits are therefore bound, but stars may be destroyedthrough
tidal disruption (seeChen et al. 2009), which is beyond the scope
of this study (see§3.1). Because of the high accelerations in this
region, the integration time of a single orbit can exceed by afew or-
ders of magnitudes the integration time for an orbit outsidethe Hill
spheres. We therefore separated each simulation into two parts: one
for initial conditions withinr < 2 which includes almost all the Hill
sphere orbits, and the other for 2< r < 60, which includes almost
none. The two datasets were pieced together with the appropriate
weights for anr−2 distribution.

4 RESULTS

4.1 Stability Maps

Figure1 presents cuts in phase space forq=1. Each point (or pixel)
represents the initial velocity conditions of an orbit. A white pixel
represents an orbit that neither diverged nor crashed throughout its
integration; the orbits were followed tot = 106. Non-white pixel is
an orbit that became unstable at a time indicated by the colourbar.
The upper and lower panels represent particles launched from x=
5,10, respectively; in all panels(y,z) = (0,0). The cuts in velocity
space are in thevx-vy plane, for orbits withvz= 0 (i.e. purely planar
orbits). A total number of 2562 orbits were calculated in each map,
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Figure 1. The evolution of the stability maps with time, up tot = 106, for
a q = 1 BBH. The horizontal and vertical axes correspond to the initial vx

andvy velocities, normalized by the localvesc (wherevesc= 1.31,1.06 for
x = 5,10). The orbits are launched from a point along thex-axis: x = 5
(top panel) andx= 10 (bottom), withvz = 0 (planar orbits).vy is therefore
the tangential velocity, and positive values of which belong to corotating
orbits. The colour indicates the survival time of each orbit. White represents
stable orbits (survive tot > 106). The black lines bound the orbits within
the classical loss cone. Note the near convergence of the stable areas for
t > 105. Below we integrate tot = 104, which corresponds to a∼ 10%
overestimate of the area in phase space occupied by stable orbits.

where in each axis grid points are uniformly spaced in the range
−vesc< vi < vesc. Note thatvescdiffers depending on the launching
radius (see caption).

All particles withv2 = v2
x +v2

y +v2
z > v2

escare unstable, as in-
dicated by the circular boundary of the stable region, whichhas
a radius of unity (Fig.1). Note that some orbits withv > vesc,
which start inwards (vx < 0), do not escape immediately, in con-
trast to the outgoing orbits (vx > 0). The orbits which start inwards
with v> vesccan be temporarily trapped by the BBH, and wonder
around on chaotic orbits. However, chaotic orbits are inherently un-
stable, and they inevitably lead to escape or a tidal disruption on
time-scales of 102-103 for these orbits.

The solid black lines correspond to the initial conditions re-

c© 2010 RAS, MNRAS000, 1–18



The Stellar Kinematic Signature of Massive Black Hole Binaries 5

quired to reach a pericentre distance3, rperi, of rmin = 1, assuming a
purely central force (i.e. the two BHs are taken to be a singlepoint
source; the bulge force is unchanged). The line shape is given by:

vy =±
√

2[Φ(x)−Φ(rmin)]+v2
x

(x/rmin)
2−1

, (17)

whereΦ(r) = Φbulge(r)− (1+q)/r is the total potential, and the
bulge term is given by equation (14).

The orbits arrive to∼ rmin, interact strongly with one of the
two BHs, and are flung out. For negative values ofvy, correspond-
ing to retrograde orbits (i.e. opposite to the BHs’ rotation), the
black lines fit well to the boundary of the stability region att = 104

(especially for the largerr, where the tangential part of the force is
small). A similar boundary is seen at positivevy, but corresponds to
higher angular momentum than expected from the simplified loss
cone solution.

As the integration time increases, fromt = 103 to 106, the
boundary of the stable regions in Fig.1 contracts. Atx = 10 there
is a roughly uniform reduction in the stable area with each ten fold
increase in time, indicating the reduction in area drops logarith-
mically with time. At x = 5 there is a similar trend in the area of
the stable retrograde orbits, but the prograde orbits area is roughly
stable beyondt = 105. The simulations described below were car-
ried out tot = 104, as the results get reasonably close to conver-
gence on this time-scale. The asymmetry, which produces theBBH
kinematic signature discussed in this paper, increases somewhat on
time-scales longer than 104. If the system is allowed to evolve fur-
ther, the kinematic signature will be somewhat enhanced with re-
spect to the results fort = 104, presented below.

In Figure 2 more phase space cuts are presented, for orbits
followed tot = 104. The greyscale indicates the time of instability
while white pixels are stable. The left, middle, and right columns
represents particles launched fromx = 3,5,10, respectively; in all
panels(y,z) = (0,0). The upper row shows cuts in velocity space
in thevx-vy plane, for orbits withvz = 0 (purely planar orbits); the
lower row shows cuts in thevy-vz plane, for orbits withvx = 0 (ini-
tial velocity tangential). Here a blue line indicated the borders of
the classical loss cone region.

With decreasing launching radius, the radial orbits get more
depleted, and the tangential orbits develop a growing asymmetry.
At x= 3, only retrograde planar orbits remain.

These plots demonstrate that the “loss cone” term, coined by
Frank & Rees(1976) is inaccurate. The unstable orbits occupy a
loss cylinder, as pointed out byCohn & Kulsrud(1978). The loss
cylinder grows asymmetrically towards the centre, and dominates
most of the phase space volume atr < 5.

The least stable orbits, apart from those on direct collision
paths with one of the BHs’ tidal radii, are the retrograde orbits just
outside the boundary of the classical loss cone, noted by thelower
blue lines in Figs.2 and3; these orbits appear as dark grey pixels in
the stability maps, as they escape on short time-scales. These orbits
lead to head on collisions with the approaching BH, and the stars
are flung out immediately. However, once the pericentre distance
of the retrograde orbit isrperi > rmin (orbits below the lower blue
line), i.e. the orbit is outside the classical loss cone, theBHs cannot
deflect the star appreciably, and the orbit becomes stable onlong
time-scales. Torquing by the binary on the star changes rapidly due

3 We use the term pericentre distance to describe the radius ofthe closest
point of a star from the centre of the coordinate system.

to their large relative velocity with the star, and the net torque tends
to cancel out in each close approach of the star.

In contrast, prograde orbits close to the classical loss cone are
flung out on longer time-scales. In this case the star approaches the
receding BH and the relative velocity is small; the star is subject to
a nearly steady torque by the binary, which leads to some energy
gain. Repeated close encounters build up the energy of the star,
until it is ejected. The further away the pericentre distance is, the
smaller is the energy gain, and the longer it takes the star tobuild up
the ejection energy. This leads to a gradual increase in the escape
time, moving away from the prograde classical loss cone boundary.
Another possible scenario is that prograde orbits close to the clas-
sical loss cone do not gradually build up their energy, but rather are
on quasi-regular orbits with a nearly fixed energy, i.e. on chaotic
orbits with a longer Lyapunov time, which increases with distance
from the centre. Once the orbit becomes chaotic, a disruptive head
on collision with one of the BHs is quick and inevitable.

The same concept is also illustrated in Figure3, but there
q= 0.1 and thusrmin =R2 ≈ 1.8, the orbital radius of the secondary
BH (see equation5). The largerrmin in theq= 0.1 case, leads to a
larger loss cone region, relative tovesc, and thus to a smaller area in
phase space available for stable orbits. Thus, aq< 1 binary leads
to a larger effect on the orbits stability compared to aq= 1 binary.
However, in the limitq→ 0 the effect of the secondary clearly dis-
appears.

4.2 The Projected Kinematic Signature

4.2.1 Monte Carlo Simulations

Four MC simulations were carried out to calculate the projected
LOSVDs. To increase the statistics for the kinematical mapsshown
below, we took a number of snapshots of the system at different
times; all snapshots were taken at times in which the BHs had the
same orbital phase (position on thex-axis). The snapshots were
taken close to the end of the integration att = 104, where the sys-
tem was closest to a steady state solution, and were spaced intime
by one BBH revolution to ensure significant offsets of the stars be-
tween snapshots.

The simulationsmain andmain2 are forq= 1. In main, the
binary is observed along they-axis (edge-on) and the BHs are max-
imally separated to the observer (side-view). Inmain2 the view
is along thex-axis so the BHs are along the line of sight (front-
view). In these two simulationsσ = 0.25 (see Table1). Simulation
ratio is for q= 0.1, for an edge-on side-view. In this calculation
σ ≈ 0.11. The simulationsingle is for a single BH, located at the
origin (i.e.q= 0); we usedσ = 0.25 for it. Note that for this case,
the binary separationa has no meaning, and thus there is another
free parameter to determine the physical scales of the system.

Table 2 lists for each simulation the total number of orbits
integrated, whereN (inner) andN (outer) refer to orbits initiated
at r < 2, and 2< r < 60, respectively (see§3.2). The values ofN
were set to be large enough to minimize the statistical noisein the
results, and may be well above the number of stars contributing to
the observed stellar spectral features in typical galaxies.

Table2 also gives the fraction of the orbits which are classi-
fied as divergent (reachingr∞) or crashing (reachingrtidal). This
fraction was calculated by giving the weights to the inner and outer
datasets, expected from ther−2 density profile. Theq= 0.1 simu-
lation has∼ 30% more diverging orbits, and twice the fraction of
crashing orbits than theq= 1 simulation. However, the total bulge
masses of the models are different (depending onσ ), and there-
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Figure 2. Stability maps for cuts along different planes, as a function of distance from the centre. In both rows, the orbits are started on thex-axis and are
launched fromx= 3 (left column),x= 5 (middle) andx= 10 (right). The integration time ist = 104, for aq= 1 BBH. The upper panels represent orbits in
the x-y plane (vz = 0), and the lower panels orbits start in they-z plane (vx = 0), i.e. start as purely tangential. Greyscale indicates the survival time of each
orbit, and the white areas are stable orbits The panels show the initial velocities normalized byvesc (= 1.57,1.31,1.06 for x= 3,5,10). Note the decreasing
area of stable prograde orbits (vy > 0) with decreasing distance from the binary. Almost only retrograde orbits are present atx= 3. The blue lines represent
the border of the classical loss cone. It reproduces fairly well the boundary of the stable retrograde orbits, in particular in thex-y plane, but fails significantly
for the prograde orbits, already atx= 10. The dashed red line represent the fixedσ of the isothermal Maxwell–Boltzmannf (v) used below.

fore these fractions translate into different mass deficits. For the
q= 1 simulations, the total bulge mass atrmax= 60 wasM ≈ 7.42
(see equation13). The relative mass deficit due to diverging orbits
in these simulations is thereforeMdef/M12 ≈ 1.01, whereM12 is
the combined BH mass, 1+q. For theq= 0.1 simulation, the to-
tal mass atrmax wasM ≈ 1.35, and the mass of diverging orbits
wasMdef/M12 ≈ 0.45. The larger fraction of diverging orbits for
q= 0.1 results from the lower bulge contribution within the binary
orbit, as expressed by the lowerσ/V, which allowed more orbits
to reachr > r∞. As expected, the twoq= 1 simulations yield the
same fraction of divergent and crashing orbits, as the difference is
only in perspective, and the statistical error is small enough.

The fraction of 10−5 orbits which diverged in theq= 0 sim-
ulation results from the numerical error in energy conservation,
which allowed this fraction of orbits withv < vesc to become un-
bound. The fraction of crashing orbits is a factor of 3 to 6 times

smaller than in theq > 0 simulations. This demonstrates qualita-
tively the enhancement of a BBH on the tidal disruption rate (e.g.
Chen et al. 2008; 2009), though the exact numbers are not valid
given the high value ofrtidal used here. In theq = 0.1 simula-
tion, the primary tidally disrupted 67 times more stars thanthe sec-
ondary.

4.2.2 The Velocity Distribution Moments

To characterize the shape of a LOSVD using a small num-
ber of parameters, we expand it to a series of the so called
Gauss–Hermite (GH) moments; this procedure is consistent with
van der Marel & Franx(1993). We use a function of the form:

L (v) =
γ√
2πσ

ew2/2

[

1+
N

∑
n=3

hnHn(w)

]

(18)
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Figure 3. Same as Fig.2 for aq= 0.1 BBH. Axes are normalized byvesc (= 0.96,0.77,0.59 for x= 3,5,10). Note that despite the factor of 10 decrease in the
secondary BH mass compared to theq= 1 case, the loss cone in fact gets larger (see text), and significant progradre/retrograde asymmetry remains.

wherew= (v−µ)/σ is the normalized velocity parameter,Hn(w)
is the Hermite polynomial of thenth degree. Note thatσ here refers
to the dispersion of this particular line profile. We find the best-
fitting γ , µ, σ and hn (n > 3) parameters using the least-squares
method.

While the GH moments derived above are not standard mo-
ments in the statistical sense, as they are derived by least-squares
best-fitting to the data, rather than by projections on the data, these
commonly used GH terms are useful to describe the deviation of
the velocity profile from a Gaussian. For practical reasons we are
mostly interested in the first two deviations, as these are often well
measured. The corresponding polynomials are:

H3(x) =
1√
3

(

2x3−3x
)

(19)

H4(x) =
1

2
√

6

(

4x4−12x2+3
)

. (20)

The coefficient ofH3(x), h3, is a measure of the profile’s lack of
symmetry for reflections with respect to its centroid, andh4 is a
measure of the even deviation from the Gaussian shape. However,
there can be significant contributions to the profiles from higher

moment and we therefore also present below plots of the actual
LOSVDs along various positions.

4.2.3 Projected views

Figure4 presents maps of the projectedµ, σ , h3 andh4 for theq= 1
simulation; for an edge-on side-view (along they-axis), where the
BHs are maximally separated. Each map is composed of 49× 49
pixels in the projected plane; each pixel represents a moment calcu-
lated from the LOSVD measured using 100 bins in velocity. Thus,
the spatial resolution is≈ 0.4 length units. Due to the maps’ up-
down symmetry and left-right antisymmetry, and the the factthat
each is made of 10 superimposed snapshots, statistics is increased
40-fold. Therefore, these maps are derived from a total effective
number of≈ 3×109 particles.

A prominent counter rotating “torus”-like structure is seen in
the top-left µ map out to a scale 5 times larger than the binary
separation. This results from the preferential stability of retrograde
orbits, clearly seen in the stability maps (Fig.2). On scales ofr . 2
one can see the prograde orbits of the stars trapped in the BHs’ Hill
spheres, as they move together with the BHs.

c© 2010 RAS, MNRAS000, 1–18



8 Yohai Meiron and Ari Laor

−5 0 5
x

−5

0

5

z
µ

-0.080

-0.060

-0.040

-0.020

0.000

0.020

0.040

0.060

0.080

−5 0 5
x

−5

0

5

z

σ

0.220

0.246

0.272

0.299

0.325

0.351

0.377

0.404

0.430

−5 0 5
x

−5

0

5

z

h3

-0.130

-0.098

-0.065

-0.033

0.000

0.033

0.065

0.098

0.130

−5 0 5
x

−5

0

5

z

h4

-0.050

-0.038

-0.025

-0.013

0.000

0.012

0.025

0.037

0.050

Figure 4. Maps of velocity moments of the LOSVD for aq = 1 BBH. An edge-on side-view of the BBH. The BHs are located atx = ±1,(y,z) = (0,0).
The line of sight velocity corresponds tovy. Note the “torus”-like structure inµ produced by the dominance of retrograde orbits outside the BH Hill spheres.
The prograde motion within the Hill spheres reflects the initial conditions. There is a dip inσ towards the centre, in contrast to the monotonic rise arounda
single BH. A torus and a dip are present also in the maps of the higher momentsh3 andh4. Note that the peak values of the pixels within the Hill spheres are
saturated.

The top-right panel in Fig.4 shows a map ofσ . As expected,
σ increases inwards, and peaks inside the Hill spheres of the two
BHs. However, there is a prominent drop inσ at r . 3. This drop
occurs atr where all the stable orbits are purely retrograde, and are
thus moving relatively coherently around the BBH. Inside the Hill
spheres, both prograde and retrograde orbits are allowed, and theσ
jumps to the expected value for the kinematics around a single BH.
The maps ofh3 andh4, on the lower left and lower right panels,
show similar structures to those seen in theµ andσ maps.

Figure5 shows the projected kinematics for an edge-on, front-
view (BBH viewed along the binary axis). The maps are remark-
ably similar to the side-view maps on scalesr > 2. On smaller
scales only a single peak is seen inσ , as the two BHs project on the
same position. Interestingly, theµ map still shows a prograde struc-
ture, although the two BHs are moving tangentially to the line of
sight. This may result from the non-uniform and anisotropicinitial
conditions of the bound orbits within the Hill spheres, as measured
in the local corotating frame centred on each BH.

Figure6 shows a face-on projection of the kinematics (the bi-
nary is viewed along thez-axis). From symmetry,µ = 0 andh3 = 0

everywhere, and only the maps ofσ andh4 are shown. Again, a
similar structure is seen on scalesr > 2 to that seen in the above
two perspectives. The small difference is the perfect axialsymme-
try, in contrast to the reflection symmetry in the edge-on views.

Figure7 presents an edge-on side-view of kinematics around
the q = 0.1 BBH. The more massive BH is on the right. The
kinematic signatures remain prominent, but the structure obviously
loses the reflection symmetry of theq= 1 case. Also, the maps of
h3 andh4 become more distinct compared to the maps ofµ andσ ,
and not similar as they were in theq = 1 case. The face-on view
in Figure8 shows that the low mass companion creates a lowσ
“trench” along its orbit, and a tiny peak within its tiny Hillsphere.
A similar effect is seen in theh4 map.

4.2.4 Slit Views

Figure9 presents slit views of the four velocity distribution mo-
ments. The slit is placed along thex-axis; and provides a cross sec-
tion of the edge-on side-view kinematical maps. The solid lines is
for the q = 1 case, and the dashed line for theq = 0.1 case. The
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Figure 5. The same as Fig.4, for an edge-on front-view, i.e. along thex-axis, so both BHs are along the line of sight. As expected, the structure on scales
beyondr & 2 remains the same. The Hill spheres now overlap and thus forma more compact structure.
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Figure 7. An edge-on side-view of aq= 0.1 BBH, as in Fig.4 for q= 1. The primary BH is now atx= 0.18 and the secondary atx=−1.82. The structures
seen in theµ andσ maps are similar to those seen in theq= 1 case, buta is now physically 5.5 smaller for the sameM• (Table1). The amplitude ofµ in the
torus structure, is now lower, in model units, compared to the q= 1 case, but this is compensated by the higher physical value of the velocity unit. The higher
GH moments display more complicated structure, but roughlysimilar to theq= 1 case.
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Figure 10.The same as Fig.9, but the system is viewed here along thez-axis (“face-on”). The odd moments,µ andh3, are not shown as they are zero due to
symmetry.
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Table 2. The properties of the four MC simulation carried out.N is the
number of orbits integrated in each run (outer and inner regions were calcu-
lated separately, see§3.2). The number of snapshots used in the Figures of
§4.2is indicated in the fourth row. The two bottom rows give the fraction
of divergent (r > r∞) and crashing (r < rtidal) orbits. These numbers can be
converted to relative mass deficiencies (see§4.2.1).

main main2 ratio single

N (outer) 6.75×107 4.26×107 8.22×107 1.13×107

N (inner) 5.86×105 6.14×105 2.49×105 1.48×105

q 1 1 0.1 0

# Snapshots 10 10 10 5

Divergent .26 .26 .34 ∼ 10−5

Crashing .013 .013 .026 .0043

top left panel presentµ. The two sharp peaks atx = ±1 for q= 1
represent the cluster of stars trapped in the Hill sphere of each BH,
moving at approximately the BHs orbital velocities of±0.5. Fur-
ther out, atx ≈ ±3, there are the broad peaks of the larger scale
counter rotating torus, as seen in Fig.4. At a low angular resolu-
tion, the broad counter rotating torus structure may be masked by
the compact corotating clusters. The amount of dilution depends
on the compact clusters luminosity compared to the torus stellar
luminosity, which may be different than assumed here.

Interestingly, whenq = 0.1, the two sharp peaks disappear.
The massive component, located atx = R1 ≈ 0.2, now moves at
a velocity of only v1 = q/

√

2(1+q) ≈ 0.067, below the torus
peak velocity. The secondary BH moves faster now, withv2 =
1/
√

2(1+q) ≈ 0.67, but its Hill sphere volume is now roughly
q−3/2 ≈ 30 times smaller, and its contribution to the total profile,
given the assumedρ(r), is negligible.

The top right panel of Fig.9 presentsσ along the slit. The
dotted line is for aq = 0 single BH, with a total mass scaled to
2, which shows the expected monotonic rise asσ ∝ r−1/2 towards
the centre. In theq= 1 case,σ at x> 3 is larger by 20–40% than
for the single BH case, with the same total mass. This rise occurs
because of the exclusions of the low velocities within the loss cone.
Furthermore, atx< 5, σ starts falling, in contrast to the sharp rise
for the q = 0 case. This results from the gradual elimination of
the prograde orbits with decreasingr. This leaves only retrograde
orbits, and a quasi-coherent flow, and thus a lowerσ . The double
peaks at the centre are due to stars bound within each Hill sphere.
For q= 0.1 only one peak is prominently seen, as expected, since
the volume of the secondary Hill sphere is∼ 30 times smaller. The
radial profile ofσ also shows a small excess compared to the single
BH with the same total mass4, and a drop close to the centre, but
the effects are less pronounced then for theq= 1 case.

The lower left panel showsh3 along the slit. Comparable peak
values are seen in both theq= 1 andq= 0.1 cases, indicating that
the amplitude of the LOSVD asymmetry is driven by the presence
of a second BH, and is not sensitive to its mass forq= in the range
0.1–1. This can also be seen in the stability maps, which showsim-
ilar asymmetry forq = 1 andq = 0.1. The value ofh4 along the

4 the plottedq= 0 can be scaled to a total mass of 1.1, for theq= 0.1 case,
by multiplying the velocities by

√

2/11≈ 0.43, and distances by 121/40≈
3.

slit is shown in the lower right panel. The differences from the sin-
gle BH case are more prominent, andq = 0.1 presents the largest
effects.

Figure10 presents the slit results for a face-on view. The ex-
cess inσ , and its depression at|x| . 4 is clearly apparent for the
q= 1 binary, and a somewhat enhanced depression is also seen for
theq= 0.1 binary, compared with the edge-on view. Significant de-
viation of theh4 profile from the single BH are now prominent for
bothq values.

4.3 Density Profile

Figures11and12present an edge-on side-view, and a face-on view
of the surface stellar densities for theq= 1 andq= 0.1 cases. Both
images for theq= 1 case are remarkably similar, showing the well
known “scouring” effect of the BBH which depletes stars close to
the binary. The slight difference is the perfect axial symmetry of
the core structure in the face-on view versus the somewhat elon-
gated core structure in vertical direction in the edge-on view. In
the q = 0.1 case the edge-on side-view shows that the secondary
BH carves out a low density torus structure along its orbit around
the primary, producing a circular structure extended in thevertical
direction, for the innermost stellar light distribution around the pri-
mary BH. The face-on view shows an axially symmetric structure
with a tiny density enhancement from stars bound to the Hill sphere
of the secondary BH.

Figure13shows the radial density profileρ(r) averaged along
spherical shells. The MC initial condition isρ(r) ∝ r−2 out to
r = Rmax= 60, as noted by the red line in the figure. In theq= 0
simulation the slope remains close to−2 in the inner parts. The
slight steepening of the slope towardsRmax, and the much steeper
slope beyondRmax, are edge effects which come from the fact that
particles on radial orbits from the initialr < 60 sphere move out to
60< r < r∞.

For the BBH cases, the slope flattens inwards towards the core,
as the fraction of unstable orbits increases with decreasing r. In the
q = 1 case, a dip forms forr < 5, with a minimum atr ≈ 2. The
rise inward atr < 2 is produced by stars bound within the Hill
spheres of the two BHs. In theq= 0.1 case the dip is shallower, as
the averaging over spherical shells dilutes the density drop which
occurs only in the region close to the secondary BH. The difference
between the initial and final density distributions is a measure of the
stars lost from the system as a function ofr, as noted in§4.2.1. It
is important to note that although our initial condition hasa core
radiush= 1, the final state core radius is∼ 10, as shown in Fig.13,
which is closer to the observed core radii in core ellipticals.

4.4 Internal Kinematics

Figure14, upper panel, shows the mean tangential component of
the velocity,Vφ , as a function ofr. At r > 10 both prograde and
retrograde orbits are similarly stable, and thusVφ approaches zero.
At r < 10 retrograde orbits become significantly more stable than
prograde (Fig.2), leading to a sharp rise inVφ . Forq= 1,Vφ rises
from ∼ 10% of the circular velocity atr = 8, to∼ 50% atr = 4
to ∼ 100% atr = 2, where only retrograde orbits survive. The
solid red line is the circular velocity, for comparison; it was cal-
culated assuming a BH mass of 2 in the centre, as in theq = 1
case. Forq= 0.1, the asymmetry between retro- and prograde or-
bits remains significant, as can be seen in Fig.3, but averaging over
spherical shells dilutes the effect of the secondary BH, dueto the
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Figure 11. The projected density for theq = 1 simulation. The left panel is an edge-on side-view, and theright panel is a face-on view. Both images are
remarkably similar, showing the well known “scouring” effect related to the BBH formation. The slight differences is the perfect axial symmetry in the face-on
view, and the somewhat elongated core structure in verticaldirection in the edge-on view. Colour represents thelogarithm of the normalizeddensity. The
values in the inner regions are saturated.
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Figure 12.The same as Fig.11, for aq= 0.1 BBH. The secondary BH carves out a low density torus structure along its orbit around the primary, producing
a circular structure extended in the vertical direction forthe innermost stellar light distribution around the primary BH. The face-on view shows an axially
symmetric structure with a tiny density enhancement from stars bound to the Hill sphere of the secondary BH.

non-axisymmetric morphology of the velocity field in this case, as
evident in Fig.7.

The middle panel of Fig.14 shows the 3D velocity dispersion
σ ′ ≡ [(σ2

r +σ2
φ +σ2

θ )/3]1/2 (not to be confused with the 1D veloc-
ity dispersion,σ ). The flattening and drop atr < 3 results, as noted
above, from the disappearance of prograde orbits, which leads to
a more coherent flow with only retrograde orbits, and thus a lower
dispersion. The red line indicatesσ ′ for theq= 0 simulation, for a
single BH with a mass of 2. The excess of the BBH 1Dσ , noted in
the slit view, can also be seen here for the 3Dσ ′.

The bottom panel of Fig.14 shows the anisotropy parameter,
β ≡ 1−σ2

t /σ2
r , whereσt ≡ (σ2

φ +σ2
θ )

1/2 is the tangential veloc-
ity dispersion, andσr is the radial velocity dispersion. The velocity
field is significantly anisotropic already atRmax, as orbits within the
loss cone are excluded, leading toσt > σr throughout the shownr-
range. As the loss cone grows inwards, the velocities becomemore

tangential, and thusβ becomes more negative. Atr < 3 only retro-
grade orbits remain and the tangential orbits become more coher-
ent, which reducesσt and increasesβ inwards.

The anisotropy derived here is about an order of magnitude
larger in absolute value than inMilosavljević & Merritt (2001) (see
their figure 16). We suspect that this issue results from the fact that
the BBH in that work does not stall atah but rather still shrinks
rapidly at this radius (as indicated by figure 1 there). The stellar dis-
tribution there cannot reach a near steady state solution, as derived
here. We verified that a shorter integration time in our simulation
indeed yields aβ which is smaller by factor of few. Thus, the stel-
lar kinematics derived inMilosavljević & Merritt (2001) does not
capture the full level of the kinematic signature of a BBH which is
stalled atah.

The dotted line model, shown in all panels, presents a modified
q= 1 model with a uniform velocity distribution extending tovesc,
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Figure 13. The radial stellar density distributions for differentq values.
n(r) is the normalized number of particles per unit volume. The red line is
the initial ∝ r−2 distribution in ther = 1–60 range. In theq = 0 case the
distribution remains nearly unchanged, apart from an extension to r > 60
by stars on nearly radial orbits. Theq = 1 model shows the flattening of
ρ(r) at r < 5, and the deep minimum atr = 2, just outside the Hill spheres
of both BHs. In theq= 0.1 case the dip is significantly reduced, partly due
to the averaging over spherical shells of a stronger dip confined only close
to the secondary BH orbit (see Fig.12).

or effectively a Maxwell–Boltzmann distribution withσ → ∞. The
remarkable similarity to the standardq= 1 model, whereσ = 0.25
(Table1), for the three internal kinematics parameters, shows that
the BBH kinematic signature is nearly independent of the form of
f (v) used for the initial conditions.

4.5 LOSVDs

Figure 15 shows the LOSVD along certain lines of sight. Each
panel shows the LOSVD along three lines of sight at distancesof
3, 5, and 10 from the centre of gravity (origin of the coordinates).
The size of the aperture corresponds to a projection pixel, an area
of 0.4×0.4 square length units. The top panels are for theq = 1
case, and the bottom panels are forq= 0.1. The left panels are for
an edge-on side-view of the binary and the right panels are for a
face-on view. The vertical axis is in units of orbits per velocity bin,
where each line has 100 velocity bins; the range of velocities is de-
termined according to the maximal escape velocity along each line
of sight, the same values used in the stability maps (Figs.2 and3).

The line FWHM changes by∼ 10% moving inward from
x = 10 tox = 5, for theq= 1 model, and it drops moving further
inwards tox = 3, as also seen in the slit views ofσ (Figs.9, 10).
This is in sharp contrast to the single BH case, where the FWHM
is expected to rise by 83% (=

√

10/3) from x= 10 tox= 3. Note
also the line asymmetry in the edge-on view, which increasesmov-
ing inwards, reflecting the enhanced retrograde motion close to the
centre. In theq = 0.1 case the presented lines of sight are away
from the secondary BH, atx=−1.82, somewhat reducing the pro-
file asymmetry. The FWHM of the lines increases fromx = 10 to
x = 5, as expected for a single BH, but it remains constant from
x = 5 to x = 3 (as seen in Figs.9, 10), in contrast to the expected
30% rise for a single BH. A noticeable asymmetry near the line
base is seen for the edge-on view, similar to the asymmetry seen in
theq= 1 case, but with a lower amplitude.
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β
Figure 14.The radial dependence of the three internal kinematics parame-
ters. The top panel is the mean tangential velocity. Atr < 10 the preference
for retrograde orbits becomes significant, leading to the rise inVφ , reach-
ing a pure circular velocity (vc) at r < 3, as only retrograde orbits remain.
The middle panel presents the 3D rms velocity dispersion. Atlarge r the
q= 1 model matches theq= 0 case (whereM• = 2), but at smallerr there
is a 20–30% excess (see also Fig.9) produced by the BBH modification
of f (v). The bottom panel is the anisotropy parameterβ . The q = 1 and
q = 0.1 models show the velocities become tangential close to the cen-
tre, in sharp contrast toq = 0, where f (v) remains nearly isotropic at all
r . The model u.v., shown in all panels, presents a modifiedq = 1 model
with a uniform velocity distribution extending tovesc(effectively Maxwell–
Boltzmann withσ → ∞). The remarkable similarity to the standardq = 1
model whereσ = 0.25 (Table1), for all three parameters, shows that the
BBH kinematic signature is nearly independent of the form off (v) used for
the initial conditions.

The LOSVDs forvz, seen for the face-on view, are symmetric,
as expected due to the reflection symmetry of the system with re-
spect to thex-y plane. In contrast, the edge-onvy profiles are asym-
metric due to the prograde/retrograde asymmetry discussedabove.
The asymmetry increases for lines of sights closer to the centre,
and towards the wings in each profile, as these are produced byor-
bits closer to the binary, where the tangential velocity asymmetry
becomes larger.

Figure16 shows the LOSVDs expected from a low angular
resolution observation for an edge-on line of sight. We compare the
velocity profiles for two lines of sight situated on oppositesides of
the centre, at distances of 5 and 10 from the centre. We integrated
the LOSVD through a circular aperture using a Gaussian with a
FWHM of 10 as the weight function, which represents the angular
point spread function (PSF) of the telescope. The left panelis for
q= 1 and the right forq= 0.1. Theq= 1 case shows a clear shift
in the peaks of the LOSVDs, which results from the net rotation of
the stars, clearly seen in the spatially resolved maps of theaverage
velocity µ (Figs. 4, 7). The shift is more prominent for the lines
of sights centred atx = ±10, i.e. at a position a FWHM of the
PSF away from the centre. In theq= 0.1 case the PSF used here
eliminates almost completely the profile differences between the
two lines of sight, and the binary kinematic signature is very small.
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5 DISCUSSION

The extensive scattering experiments presented above, using∼ 108

test particles surrounding a massive BBH embedded in a bulgepo-
tential, allowed us to accurately map the 3D velocity distribution
of stable orbits. These are used to derive maps of the projected 2D
velocity distribution moments, and of the LOSVD along various
directions. The stable orbits close to the binary are generally tan-
gential and preferentially retrograde, leading to retrograde “torus”
structure in the projected average velocity. The velocity dispersion
shows an excess of 20–40% compared to a single BH of the same
total mass, and shows a dip close to the binary. These effectslead to
a clear kinematic signature of the BBH, which can be detectedon
scales of 5–10a. Thus, they can be spatially resolved even when the
binary cannot be resolved, as expected even in the nearest galaxies
(Yu 2002).

Interestingly, the maps of the 2D velocity distribution mo-
ments for both theq = 1 and theq = 0.1 cases, show that the
kinematic signature extends on similar scales (in units ofr/a) and
with similar amplitudes (in absolute velocity). One could expect a
smaller effect if the companion BH is of smaller mass, but appar-
ently the stability of orbits is strongly influenced by a secondary
with just 10% of the primary’s mass. However, the stalling radius
is a factor of(1+q)/2q = 5.5 smaller in the latter case, and will
thus be harder to spatially resolve.

The tendency for counter rotating orbits and a veloc-
ity dispersion drop close to the centre were briefly noted by
Milosavljević & Merritt (2001). However, their results were based
on N-body simulations of∼ 105 particles, carried out on scales
∼ 100 larger than here, required to simulate the merger of the two
bulges. As a result, there were only∼ 103 particles in their study on
ther infl scale (see their table 2). The implied large statistical errors
in that study, therefore did not allow to probe the stellar kinematics
on the scale ofr infl and closer to the BBH probed here. The maps
of the projected kinematics produced byMilosavljević & Merritt
(2001) therefore do not show the BBH signature presented here.

We also find a clear drop in the projected stellar surface den-
sity, as stars are efficiently ejected from regions just outside the
Hill spheres of both BHs (forq= 1), or of the secondary BH (for
q= 0.1). This is a well known effect (e.g.Zier & Biermann 2001),
and therefore we do not discuss it further here.

The advantage of anN-body simulation is that it allows
to follow the system, starting with plausible initial conditions
of separate bulges, and derive the resulting stellar velocity dis-
tributions on large scales following the merger. For example,
Milosavljević & Merritt (2001) found that stars in the merged bulge
have a net rotation in parallel to the initial angular momentum
of the two bulges. In the scattering experiments, we just assumed
some initial conditions for the stellar distribution, and do not know
whether these were plausible. However, since our simulations are
much faster thanN-body, we can explore the dependence of the
results on the initial conditions. The initial stellarf (v) used in the
MC simulation is drawn from the bulgeσ , and as shown in Figs.2,
and in particular3, σ can become a small fraction ofvescat small
r. To explore the dependence of the BBH signature on the initial
σ chosen forf (v), we repeated the analysis with the extreme as-
sumptionσ → ∞, i.e. a uniform f (v) extending tovesc. As shown
in Fig. 14, this uniform initial f (v) produced nearly identical re-
sults. The uniformf (v) also led to small deviations (< 10%) in the
slit view results, indicating that the BBH signature is independent
of the form of the initial f (v). Thus, the merger history of the bi-
nary, which may setf (v) on larger scales of the bulge, is likely not

important on the scales ofr/a∼ a few, when the binary becomes
hard and stalls.

We also explored the effects of the uniform density core ra-
diush (equation12), and produced stability maps forh= 3 instead
of h = 1, for the sameσ . The maps look nearly indistinguishable
from those shown in§4.1. This is expected as increasingh reduces
the bulge mass, which is already very small forh= 1 close to the
BBH (equation13). So, the BBH signature is independent of the
exact form of the inner bulge potential, as expected since a hard
binary resides atah ≪ GM•/4σ2, where the bulge mass is neg-
ligible. However, in a flat core the integrated line of sight stellar
light increases outwards, increasing the dilution of the BBH kine-
matic signature by the extended stellar light. The final state core
radius derived here ofH ∼ 10 (Fig.13) is significantly larger than
the initial condition ofh= 1, but is clearly too small in some core
ellipticals, where the BBH kinematic signature will be harder to
detect.

Furthermore, as shown in Fig.1, a large fraction of the unsta-
ble orbits are lost on a time-scale oft < 103, or< 80 BBH periods,
which corresponds to a few orbital times for orbits startingat r ∼
5–10. Thus, the BBH kinematic signature is largely imprinted al-
ready on a time-scale< 106 yr. Unstable orbits present in the initial
f (v) are quickly excluded. The uniqueness of the BBH signature
depends on the population of the velocity phase space of stable
orbits. Since the stable orbits around a BBH are quasi-periodic, a
given orbit likely moves around in velocity phase space, andso a
population of stars which populate only a small peculiar corner of
the stable region in velocity phase space appears unlikely.The BBH
signature is therefore likely well defined.

The unstable orbits are essentially orbits within the loss cone
(or “loss cylinder”, as mentioned above), which acquires a more
complicated shape whenr/a is a few. The kinematics we described
may be more accurately termed “kinematic signature of loss cone
depletion”. The loss cone refilling mechanisms will tend to erase
the signature presented above. These mechanisms tend to become
more effective on largerr, in particular atr ≫ r infl , where either
steady state, or time dependent perturbations to the spherically
symmetric potential assumed here are more likely to be found, or to
occur transiently. On the scale ofr . 10 probed here, such mecha-
nisms are less likely to occur. If they occur transiently, they are less
likely to have a significant effect, given the shorter survival time of
unstable orbits on these scales.

The enhancement of the observedσ within the BBH r infl by
20–40% implies that the standard direct estimate ofM•, which as-
sumes an isotropicf (v), will lead to an overestimate ofM• by a
factor of 1.5–2.

Once the BHs coalesced, the signature will be lost on a time-
scale ofM∗/Ṁ∗, whereṀ∗ is the loss cone refilling rate andM∗ is
the stellar mass atr . 10. This will likely occur on a time-scale sig-
nificantly longer than the dynamical time-scale atr infl , and may in
fact be longer than the Hubble time, if it occurs in the low density
core of a giant elliptical galaxy. However, if the BBH acquires a sig-
nificant kick following the merger, it may oscillate around the core
(Gualandris & Merritt 2008), which will erase the BBH kinematic
signature on a much shorter time-scale, possibly while enhancing
the core due to heating of the stars. The detection of the predicted
BBH kinematic signature implies the presence of a BBH currently,
or a merger which took place on time-scales shorter than the loss
cone refilling time, although this timescale may be the Hubble time
in giant ellipticals.

The calculations presented above follow test particles, and
thus do not take into account the energy and angular momentum
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Figure 15. The LOSVDs at different positions. The viewing angle and themodel are noted in each panel. Each panel shows three lines ofsight (along the
y-axis) atz= 0 andx= 3,5,10. The error bars are statistical errors. The solid lines are the GH best-fits up to order 20. Note that the line FWHM changes by
∼ 10% moving inward fromx= 10 tox= 5, for theq= 1 case, anddropsmoving inwards tox= 3, in sharp contrast to expected rise for the single BH case.
In theq= 0.1 case the FWHM increases fromx= 10 tox= 5, but remains constant fromx= 5 to x= 3, in contrast to the expected rise for a single BH. A
noticeable asymmetry near the line base is seen for bothq values. The lines are symmetric in the face-on views, and show similar trends in the FWHM vs.
distance from the centre, as seen in the edge-on, side-view.

lost from the BBH due to the stellar ejection, which can be signifi-
cant given the large fraction of ejected stellar mass (see§4.2.1). The
justification is that the purpose of this work is to look for the steady
state solution, i.e. find which orbits may be populated and which
cannot survive for long, when the BBH is at the stalling radius,
rather than follow the time evolution of the system. The implied
significant energy loss of the BBH found here, results from the in-
appropriate initial conditions of a spherically symmetricρ ∝ r−2

assumed here for a hard BBH. In reality, stars may be ejected from
the system much earlier when the binary just becomes bound, i.e.
whena∼ r infl , or potentially even earlier and on larger scales, based
on the high value ofMdef/M• ∼ 10, and the small scatter, found by
Kormendy & Bender(2009) for massive ellipticals.

Here we find that the kinematic signature of the BBH is im-
printed on the same scale (r < 10) that the surface density signature
of the BBH is imprinted (inevitable as stars with specific kinemat-
ics are lost). Therefore, ifMdef is indeed a signature of the BBH
formation process, then the BBH kinematic signature may be im-
printed already on the significantly larger scales of the core radius,

whereMdef is measured, of the order of tens to hundreds of parsecs
(Faber et al. 1997; Kormendy et al. 2009), and may be more easily
detectable, possibly already in existing data. Clearly, itis interest-
ing to explore the BBH merger starting fromr infl , and follow the
resulting kinematic signature on larger scales than those calculated
in this study.

The calculations presented here assume circular BH orbits.
The BBH may have a high eccentricity due to various mechanism
(e.g. Makino et al. 1993; Mayer et al. 2007; Sesana et al. 2007;
Berentzen et al. 2009). In that case the effects calculated here will
likely extend to larger scales, set by the major axis of the binary
orbit. It is less clear if the binary stalls in such a case, andat what
radius, if it does.

It is also interesting to note that stars bound within the Hill
spheres preserve the original populations before the merger oc-
curred, as stars outside the Hill sphere with a total energy below
the Hill sphere potential barrier (measured in the corotating frame,
where the energy of each orbit is conserved) cannot enter it,and
stars with a total energy above the potential barrier in the Hill
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Figure 16. The LOSVDs for an edge-on view with a low angular resolution observation. The LOSVDs are integrated through a circular aperture with a
Gaussian weight function with a FWHM of 10, representing an angular resolution five times worse than the binary separation. The left panel is forq= 1 and
the right forq= 0.1. The lines of site are centred atx=±10 andx=±5, i.e. on both sides of the BBH. There is a clear shift in the line peaks in theq= 1 case
between the two sides, resulting from the rotation structure evident in the side-view maps (see Fig.4). The shift is significantly smaller in theq= 0.1 case.

sphere, are on highly unstable orbits and disappear quicklyfrom
the system. Stars can enter or leave the Hill spheres only through
an energy exchange with a fourth body, which may be very slow in
low density cores.

6 CONCLUSIONS

Orbits in the restricted three body problem are notoriouslycomplex
(though some insight can be gained from stability maps). Here we
exploit this property to derive the signature of a BBH on the nearby
stellar kinematics, once unstable orbits are gone. The fraction of
velocity phase space populated by stable orbits decreases inwards.
The stars ejected by unstable orbits will leave behind a light defi-
ciency, which was suggested to explain the core structure ofmas-
sive ellipticals. The remaining stars are on significantly anisotropic
orbits, characterized by the following properties:

(i) Tangential orbits dominate, mostly retrograde atr < 5.
(ii) Increasedσ , due to the elimination of low tangential veloc-

ity orbits.
(iii) A drop in σ at r < 5, as most orbits become retrograde.

These properties lead to a specific signature on the LOSVD mo-
ments on scales as large as 5–10ah, which may be resolved in
nearby galaxies. The detection of these kinematic featuresmay in-
dicate the presence of a BBH currently, or a relaxation time ago,
beyond which the kinematic signature is erased. If the core struc-
ture is a signature of a BBH phase in the past, some BBH kinematic
signature may remain on the core scale as well.
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