Astro-286 - Week 4

1. Gravitational focusing - runaway growth:

(a) Derived the mass growth rate of embryos in the case of $v_{\text {esc }} \gg v_{0}$.
(b) How does the mass doubling time in this regime depends on the mass?
2. Hill Sphere (10pt)
(a) (7pt) Assume a system with two masses M_{1} and M_{2} and a test particle $M_{t} \ll$ M_{1}, M_{2}. In the center of mass of the system (see Figure for geometry) the angular frequency is

$$
\begin{equation*}
\Omega=\sqrt{\frac{G\left(M_{1}+M_{2}\right)}{D}}, \tag{1}
\end{equation*}
$$

where $D=x_{M 1}+x_{M 2}$. In this case we saw on week 2 that the derivative of $\Phi_{\text {eff }}$ is zero (i.e., the effective potential at a distance R form M_{2} is zero). Remember that we can write the effective potential for a two dimentintal rotating potential as

$$
\begin{equation*}
\Phi_{e f f}=\Phi-\frac{1}{2}|\vec{\Omega} \times \vec{x}| \tag{2}
\end{equation*}
$$

Use that to derive the more exact expression for the Hill radius (i.e., with the $\sqrt{3}$) factor, under the assumption that $D \gg R$.

(b) (3pt) What were the two additional assumptions we used in the Hill derivation above?
3. In a homework assignment students were requested to consider a particle in a planetary ring with semi-major axis a that is in a circular orbit about a planet of mass M. In this system there is a nearby moon, also in a circular orbit around the planet with a semi-major axis a. The ratio of the moon to planet mass is $\mu=m / M \ll 1$. The difference between moon and particle semi-major axes (for the orbit around the planet) is $d a \ll a$. At closes approach the moon gives a kick to the particle's velocity. The students were asked to calculate the kick velocity and worked together on the answer. A hint in the problem was that $m / M \ll a / d a$.
(a) Student A got that

$$
\begin{equation*}
\delta v=\mu\left(\frac{a}{d a}\right)^{2} \sqrt{\frac{G M}{a}} \tag{3}
\end{equation*}
$$

What was the approximation she used? reproduce her derivation.
(b) Student B said that she is wrong to use this approximation. Who is correct?
4. Derivation of the disruption relation ($24 \mathrm{pt}, 12 \mathrm{pt}$ each)
(a) Derive the following equations for the $\hat{\mathbf{r}}$ and $\hat{\phi}$ components from the close equations we wrote in class (i.e., momentum, continuity and poisson).

$$
\begin{array}{ll}
\hat{\mathbf{r}}: & \frac{\partial v_{r}}{\partial t}-2 \Omega \delta v_{\phi}=\frac{1}{\Sigma_{0}} \frac{d P_{1}}{d r}-\frac{\partial \Phi}{\partial r} . \\
\hat{\phi}: & \frac{\partial \delta v_{\phi}}{\partial t}+v_{r}\left(\Omega+\frac{d(\Omega r)}{d r}\right)=0 . \tag{5}
\end{array}
$$

(b) Using these equations find the dispersion relation we wrote in class.

